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colum-wise decorrelation used in conjunction with Aiaptive Diffet ential
Predictive Coding Modulation (ADPCN) for tht. row-wise decorrelatim,, followed by

quantization to give the desired date compression. This system requires use of

quantization techniques which limit bystem perfornance. Optimization of adaptive

scalar quantizers and use of vector quantizers aid in the adaptatior. of the system

to variations in the image statistics. This report represents a stu,"y of such

quantizers in the ASPC system. By examining these quantization methods, it will

be shown that it is vital that Lhe proper quantizer be incorporated itto the
system to achieve a particular data rate at desired distortion l-vels.
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ABSTRACT S

The transmission of digital imagery has become a
necessity in recent times. Systems such as communications
and weather satellites, facsimile, remote control, and
machine intelligence can and do make use of data
compression techniques to reduce bandwidth and power
consumption.

Research on these techniques has led to one form of
image data compression which achieves good image quality
for intraframe coding at low data rates. This technique
is known as Adaptive Stochastic Picture Coding (ASPC)
which consists of a one-dimensional unitary transform for
column-wise decorrelation used in conjunction with
Adaptive Differiential Predictive Coding Modulation (ADPCM)
for the row-wise decorrelation, followed by quantization
to give the desired data compression. This system
requires use of quantization techniques which limit system
performance. Optimization of adaptive scalar quantizers
and use of vector quantizers aid in the adaptation of the
system to variations in the image statistics. This report
represents a study of such quantizers in the ASPC system.
By examining these quantization methods, it will be shown
that it is vital that the proper quantizer be incorporated
into the system to achieve a particular data rate at
desired distortion levels.
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CHAPTER ONE

0

INTRODUCTION

The purpose of the work reported here is to examine

various quantization and coding methods for suitability as

an integral element in an image data compression and

transmission system -- specifically the Adaptive

Stochastic Picture Coding (ASPC) system (sometimes also

known as the Adaptive Hybrid Picture Coding system -

AHPC). Pursuant to this aim, it was necessary to perform

a qualitative analysis of system requirements and

performance objectives. On the completion of this

analysis, the results constituted a set of guidelines for

the desired system operation. -

The main criteria specified is the ability to

transmit a picture with a good overall subjective

reconstruction at low data rates. This is rephrased as a

desire to transmit pictures at low data rates with

an "acceptable" amount of distortion. As is expected,

built in limitations of the system (ASPC in this case)

prevent the achievement of the theoretical optimal

performance. One can however, "fix" most of the system

configuration to a set standard and study the effects of

1 'i
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replacing an element of the system (here the quantizer)

with various experimental schemes. The observed results

of the system's performance for each scheme are then

evaluated in terms of meeting objective criteria. -j
Since the target of this report was the study of

the effects of various quantizers on the AHPC system, the

techniques of fundamental quantizer design were applied,

and the different configurations of quantizers were

incorporated into the system. Extensive computer

simulation of each quantizer implementation was made in

order that the system performance could be observed for a

cross-comparison of quantizer schemes.

Since very little of the visual process is

understood to date, many image processing systems are

modeled after communications and speech processing

systems. Although image and speech systems exemplify two

different signal processing applications, they both

exhibit similarities in the type of signals they must deal

with and the ways in which these signals are dealt. Due

to the similarities of the design of ASPC to speech

processing systems, the analysis and design of several of

the quantization methods were paralleled to those used in

speech processing applications.

The following chapters will describe the theory and

outcomes of this quantizer study, beginning with the basic

fundamentals of quantization theory appearing in Chapter

2
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Two, followed by a description of the ASPC system in

Chapter Three. Chapter Four presents the derivation of

the Max-Lloyd concept for scalar quantization. Chapter

Five gives the derivation and design algorithm for vector

quantization. Chapter Six gives detailed explanations of

- - the various system configurations and program simulation

descriptions. Chapter Seven summarizes the results and

-conclusions of the report including performance

evaluations, data rate calculations, and thoughts about

future research projects incorporating these findings.

Appendix A gives the supporting photographs of the image

reconstruction as well as all error histograms between the.-

original image and received image as support for

conclusions drawn in Chapter Seven. Appendix B gives the

program flow charts and listings.

3
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CHAPTER TWO

OVERVI Q UAN TI E THEORY

In this chapter, the problems ' selecting the

appropriate methods of signal digit Ition needed to

approximate a source signal waveform .s addressed. In

particular, an examination will be made -i jarious types of

signal quantization including theory, implementation,

performance, and general applications of quantizers with the

goal of guiding the selection of a quantization/coding

scheme for image transmission.

Signal quantization may be defined as a mapping of

samples from an analog source signal into a finite set of

values (constrained alphabet) representing the samples in an

attempt to approximate or identify the source. Methods of

obtaining this mapping are of primary concern. It will be

shown that the specific application, as well as performance

and implementation criteria, will be of fundamental

importance to the selection of appropriate methods.

Signal or waveform quantizers have been proposed in

multitudinous variety. However each exhibit certain

characteristics which can be classified. Some basic

classifications of many quantizers are shown in figure 1.

Each class of quantizers contains its own particular

4



LL --- ~-
-~~~~~ 

R'...~.

.5..

Z4--

I ~ CL.

C1



"-. _-_ 77 -

- ..- •*..

advantages and disadvantages due to theory and design

tradeoffs.

I. TIME-INVARIANT &U1TBR

A. UNIFO QUANTIZATION

Gersho [11] describes memoryless N-point symmetrical

quantizers by specifying a set of N+1 decision levels {x },
k

k=0,...,N, and a set of N output points fy 1, j=l....N.

When the value, x, of an input sample lies in the i

quantizing interval, namely R ={x <x<x }, the quantizer
i i-l i

produces the output value y . Since y is used to
i i

approximate samples in R , it follows that ye R . The outer
i i i

levels are chosen so that xe(x ,x ). See figure 2. The
0 N

description of this class of quantizers certainly fits the

general definition stated previously.

Probably the first widely-used quantizers were those of

the type described by Gersho, particularly the one-

dimensional time-invariant class. These provide easy

implementation due to their simplistic design. A quantizer

of this sort merely samples the signal to be quantized

(normally at a fixed uniform sample rate) and immediaLely

*produces a representative value for each sample from a fixed

6
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set of finite, uniformly spaced values symmetrically placed

about the average input value. A typical input/output graph

is illustrated in figure 3.

Two basic styles of design now surface: the mid-tread

and the mid-riser. The mid-tread produces a zero output for

signals at the mean input level. The mid-riser produces

output values shifting from a negative value to a positive

value at the mean input level. See figure 4. Note that

the terms positive and negative could be with respect to a

mean value instead of zero.

As is intuitively obvious, this type of quantizer would

perform best for stationary uniformly distributed source

signals. If the source statistics were to change with time,

the quantizer could overload -- producing useless output.

If we express the quantization distortion as d(x) = Q(x)-x

we find the minimum distortion for this system is produced

when the input signal, x, is uniformly distributed. This is

true regardless of whether it is of the mid-tread or mid-

riser type.

B. NON-UNIFO QUANTIZATION

Most signals of interest are seldom of the uniformly

distributed class. Therefore, to accommodate arbitrary

distributions, a design procedure must be developed.

II. 9

i , . . . .,- - ."A



Q (X)

4-a

Q (X)

Quantizer Types:
a) Mid-Tread

I b)Mid-Riser
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Figure 4
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Assuming the signals to be stationary, the case of signals

with known probability distributions is investigated.

Applications where a specific probability density function

is known to describe the source signal can use quantizers

Swhich are designed to take advantage of this special

knowledge. Derivations of quantizers for these signals are

presented in the classic works by Lloyd [241 and Max (251

and will be discussed extensively in a later chapter. These

papers dealt with producing optimum memoryless signals with

probability distributions known a priori.

Quantizers which minimized distortion defined by the

mean squared quantization error were specifically derived,

yet the same general procedure could be used for distortion

measures of other types. Roe [331, for example, derived
e

quantizers for all distortions of the .form: E{error 1.

Tabulated results for the decision levels and output points

were produced for a standard normal distribution from the

iterative procedure derived [241 [25]. Others have since

formed tables for other common distributions, such as the

Laplacian and Rayleigh, useful in speech, optical

holography, and image processing applications [22] [23].

*
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Another method *for digitizing signals of this nature

has been suggested by Bennett [2]. The non-uniform

quantizer is modeled as a zero-memory nonlinearity function,

F(x), followed by a uniform quantizer, in turn followed by
-1the inverse of the function, F (x). The procedure is

called "compandingn. A diagram appears in figure 5. The

first nonlinear function, F(x), compresses the input signal

by spreading out the low amplitude portions and shrinking

those of high amplitude. Since the low amplitudes have a

higher probability, this allows a larger proportion of

decision levels of the uniform quantizer to be devoted to

higher probability of occurence regions, and fewer to those

of lower probability -- increasing the accuracy of the

representation. The inversion at the end reverses the

process, producing the estimate of the signal. This

compression and expansion of the signal, hence the name

"companding", combine to yield results comparable to those

of the non-uniform quantizer.

Holzwarth and Smith [11] have made a study of speech

transmission systems with widely varying power levels using
6

companding. They determined a compressor function of:

log (1- tx v (V)
F(x) = V ------------ "

log(l+) ---

12
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Since known as a "JJ-law curve".

II. TIME-VARYING QATIER

A. ADAPTVL QUANTIz.ERS

Turning now to the non-stationary sources, it is only

natural that research continue from achievements made thus

far. Certain applications such as speech digitization and

image coding systems must deal with this type of source.

Quantizers which can adapt to time-varying source statistics

and still yield satisfactory results are vital to such data

compression schemes. Whichever scheme one uses, such as

APC, DPCM, or PPDPCM, the quantizer will determine the

overall system performance. One common performance measure

is the signal-to-quantization noise ratio.

Most of the recent work in speech digitization and

* image coding systems concentrate on the use of designs

related to the DPCM (Differiential-Pulse-Coded-Modulation)

configuration. Gibson [15] gives a good tutorial on such

designs. The aspects of fixed and adaptive predictors

utilized in such systems will not be presented here, but it

should be noted that they too will play an important role in

system performance and efficiency by reducing signal

redundancy such as speaker pitch in speech systems. The

.
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(A) DPCtI TRANSMIITTER LOOP
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S(KIK-1)

a(B) DPcri RECEIVER LOOP .

DPCM a) Transmitter Loop
b) Receiver Loop

Figure 6
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general DPCM differential encoder and decoder block diagrams

are illustrated in figure 6. Systems using these schemes

without any adaptive consideration are optimal only for

stationary processes.

For the quantizer to adapt to the signal's statistical

variations, it must acquire some form of estimate of these

statistical variations, usually the signal variance, upon

which it is to base its adaptation. Two common

classifications of adaptive quantizers are provided by

separating quantizers as to whether they are forward

adaptive or backward adaptive. Forward adaptive quantizers

extract the information for their estimate from the

quantizer input and must transmit some additional

information regarding the subsequent step size variation to

the receiver. Backward adaptive quantizers utilize the

quantized signal alone, eliminating the need for additional

transmission. The backward adaptive quantizer must however,

base its estimate on cruder information due the quantization

noise. See figure 7.

The basic idea is to modify the quantizer input and -g

output step sizes in an effort to match the changing signal

using a signal variance estimate. Goodman and Gersho [17]

describe well the adaptation. Again the quantizer of 2N

output levels is characterized as in figure 8. It contains

a set of N+l decision levels {A(k)f }, 0<i<N, and a set of N

i6
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4

(9) BACKWARD ADAPTIVE Q!IANTIZER

Adaptive Quantizer: a) Forward Adaptive
b) Backward Adaptive

Figure 7
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quantization levels, {A(k)q }, l<i<N. For an input
i

z(k), the quantizer is given by:

Q(z(k)) = A(k)q z>0; 0<A(k)f <z(k)<A(k)e (la)
i i-i i1"

and by symmetry:

Q(z(k)) = -Q(-z(k)) z<0. (ib)

The parameters { } and {?7 } are forced to approximate
i i .

the shape of the desired probability density determined

through the distortion minimization analysis such as that by

Lloyd [24] and Max [25] for stationary sources. The scaling

factor, or step size (k)>0, which determines the dynamic

range, will be made to vary with time. Several good

algorithms for determining step size have been formulated,

such as these three given by Stroh [15]:

A(k) = 1/k e (k-i) , (2)
- i-l 2 1/2

A(k) =a [(1-a) >G e (k-i)] , (3)
1 2 "1.2

ai-1

A(k) = (-) a e(k-i) , (4)a 2  '* 1

for both forward and backward adaptive quantizers to be used

in a DPCM scheme. Noll [15] proposed two:

19
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A = amax{Is(k-i)-s(k-i-1)I }, (5)

for first order predictors and

r_ Ai 2 1/2
SA(k) a { I [s(i)- la s(i-j)] } (6)

"LZ. jai J

where {a , j=l,...,N} are N predictor coefficients for an
- ." th j

N - order predictor. Jayant and Cummiskey [151 obtained

the popular "one-word memory" quantizer with step size:

A(k+l) = M(IQ(k)) A (k) (7)

which is a backward adaptive quantizer. M(.) is a time-

invariant multiplier function dependent upon the quantized

signal as defined in (1) with z(k) = e(k); e(k) some

residual error signal such as in DPCM.

It has been found that an adaptive quantizer based on a

step size as in (7) performs well for ideal channels, but is

quite susceptible to transmission errors. Gibson and

Wilkenson [15] have shown that the difficulty can be

mitigated with the algorithm modified to:

A(k+l). M IQ(k) I A (k) (8)

where O< 0<1 will provide a degree of robustness. Gibson

[15] discusses a closely related backward adaptive quantizpr

proposed by Cohn and Melsa [9] [10] where the step size

adjusts in the same fashion as the adaptive Jayant quantizer

20
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except for two rarely used outer levels. The purpose of

which is to allow rapid expansion when a pitch pulse occurs

in a speech encoding system. It is thus termed a pitch-

compensating quantizer (PCQ), and has seen principal

applications with fixed and backward adaptive predictors.

B. CODING

Once the signal is quantized, it is usually encoded in

some fashion for transmission. The most common form of

coding for an N-level quantizer is binary coding. The idea

being to assign a code word of length log 2N for each output

level. This is based on the assumptions that the symbols

are independent and all quantization levels are equally

likely. The assumption of source symbol independence is

generally untrue for most applications. Huang and

Schultheiss [201 offer a technique to remedy this problem

and will be discussed momentarily.

The assumption of equally likely quantization levels is

also untrue for applications such as speech. Researchers

have taken advantage of this fact by designing variable-

length codes for the output levels. Using a priori

knowledge, one can assign code words of short length for

highly probable quantization levels and code words of longer

length for those levels with lower probability. Variable

21
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length coding is also known as "entropy coding", since the

average code word length can approach the entropy of the

symbols transmitted when the symbols are indeed independent.

Hence, the entropy given as:

HM

H = - plog p (9)
i 2 i

becomes a lower bound for the average code word length.

Berger [4] defines minimum entropy quantizers in a rate

distortion sense by defining a rate:

R = - TPlog p (10)
i 2 i

and distortion:

D=EjY-Xj X YLi .~dF(x) (1

where {a i } is the set of guantization thresholds and { Y .

the set of reconstruction levels. The optimum entropy

quantizer is therefore one which minimizes the distortion D

for a fixed rate R.

Berger (4] also discusses permutation coding as

developed by Slepian [34] and introduces a theorem showing

variable-length coding of quantizer output and permutation

coding are equivalent in the sense that their optimum R

versus D performances are identical.

22

. . . . . . . ... . . . . . . . . . . . . ..-



. °...

C. 3LECTO QUANTI.ZERS

All that has been discussed previously is now extended

to the next level of sophistication. This new level is one

which will deal with quantizing multiple or "blocks" of

samples called quantization with memory. Block quantization

is exactly that, quantizing the samples in blocks. One can

think of the quantizers discussed previously as one-

dimensional quantizers, and block quantizers operating on

blocks of K samples as K-dimensional. The procedure uses

blocks of quantizers for transmission as in figure 9.

S"-Huang-_andSchu]theiss_ [201 incorporate this method in a

system for the transmission of correlated gaussian random

variables. They use a linear transformation (P) to first

convert K dependent random variables into K independent

random variables. These are quantized one at a time and the

output of each quantizer is transmitted by a binary code.

Lastly, a second KxK linear transformation (R) constructs

from the quantized values the best estimate (in the mean-

squared-error sense) of the original values. They also show

that the best transformation R would be the inverse of the

first transformation P-. The best transformation P is the

transpose of the orthogonal matrix which diagonalizes the

moment matrix of the original (correlated) random variables.

A diagram of this process is illustrated in figure 10.

23
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Although the terms block and vector quantization are

often used interchangeably, when one sees the term vector

quantization it is usually in reference to a method more

subtle than the brute force method of K quantizers. Gersho

[13] states that block or vector quantization is

intrinsically superior to predictive coding, transform

coding, and other suboptimal procedures since it achieves

optimal rate distortion performance subject only to memory

(block) length of the observable segment being encoded. One

can think of vector quantization as a method of representing

a sequence of K samples of the signal as a vector in K-

dimensional space. This space is partitioned into a finite

number of regions, the geometry of which is determined in a

. . . .h~r-such-tat certain optimality criteria are achieved.

Each region of space is then assigned a specific code word.

As the region of space for each sample vector is identified,

its representative code word is selected and after trans-

mission can be decoded via a code lookup table or "code

book* into an output vector representing the original input

vector. Thus vector quantization is a surjective mapping of

K-dimensional input vectors to corresponding representative

vectors,

k k
SR o- Y, YcR (12)
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0D. RANiflQU fANTIZERS M C Qn DQM DESIGI

Gersho 113] analyzes the approach to vector

quantization by Linde, Buzo, and Gray (23] with random

quantizers. Since the only effective method for the design

of multidimensional quantizers is the use of a clustering

algorithm, their design algorithm uses a training set of

4random vectors generated from the source. The training set

is the collection {x ,...,x I of M independent observations
1 M

of the continuously distributed random variable X with a

specified joint density function where M >> N for an N level

or N regional quantizer. The set of output vectors

{y ....,y }is determined by:
1 N

M

x xS (x)

i IL 3 
-d ' "

y -------- (13)

S (x)

and

.I~ i-Xj Ily xI (14)

for all i-l,2,...,M and j=l,2....,N.

27.
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The code book resulting from such a cluster design may

contain a high degree of complexity in coder implementation.

This arises from the fact that an exhaustive search of the

entire code book must be made for the nearest output vector

to the input vector since the output vectors have no natural

structure. However, at the price of suboptimality and

increased code book storage requirements, one can induce

certain structures upon the code book to greatly reduce the

search time.

Buzo, Gray, Gray, Markel [8] use a binary tree-

structured code book in a speech coding problem. Juang,

Wong, Gray [22] show a more general M-ary tree structured

code book design offers better tradeoff between performance

and processing time but is yet inferior to a "full-search"

code book.

28
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E. LAIT.1C. oUANTI~g

Another structured code book design is based upon

lattice theory. Gersho [13] thoroughly describes lattice

quantizers. The quantizer uses a set of output points which

lie in a bounded region of a lattice. A K-dimensional

lattice being defined by any nonsingular KxK matrix (U) so

that for a K-dimensional column vector (m), the lattice (A)

is given by the set of all vectors of the form:

= U m (15)

Notice that the columns of U are lattice points and form a

basis. So all other points may be found by taking linear

combinations of the basis vectors with integer-valued

coefficients. An example of a two-dimensional hexagonal

lattice quantizer is depicted in figure 11. The hexagon

shapes define the partition regions of the decision space,

and the points correspond to the representative values for

each partition set. Note that the points are in fact the

centroid of each hexagon.

Since the lattice points form a regularly spaced array

of points in K-dimensional space, a lattice quantizer is a

uniform quantizer. Gersho [19] uses this fact in designing

multidimensional compandors, much as those of the one-dimen-

sional class are designed.

29
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Intra-frame DPCM using adaptive quantization has

recently been studied by Zetterberg [38] for two types of

adaptive quantizers discussed earlier -- the Jayant

quantizer and a forward adaptive quantizer using a variance

estimator. Comparisons were made and tabulated by judging

picture quality via SNR and also subjective examination.

They observed that nonmoving areas should use a fine

quantizer to limit granular noise to low levels whereas

moving areas need a large dynamic range or coarser quantizer

to avoid overload by large prediction values. Entropy

coding was then used in order to meet a 1 bit/pel

requirement of European standard transmission rate. The

basic block diagram is figure 12.

31
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CHAPTER THREE

A number of well known techniques in communcations

theory exist for compressing data from a source signal. Two

methods which have received much attention are the

Differiential Pulse Coded Modulation (DPCM) method and the

transformation method. Both exhibit the desired data

compression performance, yet their operation is quite

different.

i. ~P1 SYSXTEMS

DPCM systems operate under the assumption that a

degree of correlation exists among a stream of data that is

to be transmitted. This assumption is the basis for a

scheme whereby a prediction of each datum can be made based

on the previous data. In other words, a prediction at time

k, is made on the next piece of data to be transmitted, at

time k+l, based upon a linear combination of the present and

previous data. So that,

IL

S(k+l k,k-l,...,k-n)- a S(k-i) (16)

1-0

where S(k) represents the data stream to be transmitted,

33
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S(k+l Ik,k-l,...,k-n) the predicted value for time k+l based

on the previous values back through time k-n, and fa I is ai -

set on n+l coefficients.

This prediction is then subtracted from the actual

value of S at time k+l, S(k+l), yielding an error or

"residual" from the original sequence, called E(k+l):

E(k+l) = S(k+l) - S(k+l k,k-l,...,k-n) (17)

This residual is then quantized and transmitted. See figure

13-A. If the predictor and quantizer are adequately

designed to the signals, then the desired data compression

is achieved.

The receiver stage is assumed to have the same

predictor as the transmitter, but since it will only receive

a quantized estimate of the true residual, the transmitter

must be restricted to operate with the quantized residuals

in generating each update in order to achive parity between

the two. Therefore the quantized residual is added to the

prediction to obtain the source estimate to be used in later

predictions. So in fact,

n
S(k+lk,k-l,...,k-n) = aS(k-i) (18)

71:0

t -q
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where

S(k) = S(klk-1,...,k-n-1) + E (k) (19)
q

and the quantized residual E (k) is
q

E (k) = S(k) - S(k k-l,...,k-n-1) + Q (k) (20)
q n

Thus the observed or estimated sequence is:

S(k) = S(klk-l,...,k-n-1) + (21)

S(k) - S(k k-l,...,k-n-l + Q (k)
n

S(k) + Q (k)
n

is the actual sequence S(k) corrupted by quantization noise,

Q (k).
n

At the receiver, this process is mirrored by

reconstructing the estimated sequence of the source by

adding the prediction to the received quantized residual.

See figure 13-B. Both predictors of the transmitter and

receiver incorporate an n-cell memory register for the

previous n values.

So if one neglects the effects of channel erroLs in

the transmission and any external noise injected into the

transmitter or receiver, then the quantization noise Q
n

35
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proves to be the detrimonious aspect of the system for a

particular predictor scheme. Thus for a fixed prediction

scheme, the quantizer yields the limiting influence to the

system's performance. This is why so much energy has been

devoted toward the study of quantizers for this

communications configuration.

According to Pratt [221, the notion of coding and

transmitting the Fourier transform of a monochromatic image

in place of the original image, was introduced by Andrews

and Pratt in 1968. Images of this type tend to have a high

degree of correlation among neighboring pixels. This

correlation causes the energy distribution in a two-

dimensional transform of a monochromatic image to be

clustered into small portions of samples. It was discovered

that to achieve a reduction in data rate, and thus bandwidth

requirements, only the high order transform coefficients

need to be quantized accurately to maintain a satisfactory

reconstruction of the image.

The normal procedure in two-dimensional image coding

is to apply a unitary transformation to an image which has

been divided up into equal size square blocks. The highest

energy transform coefficients in each block are finely
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quantized while the lower energy coefficients are grossly

quantized. These quantized values are then encoded and

transmitted block-by-block to the receiver which performs

the appropriate decoding and inverse tranformation to

reconstruct each original block, and hence the orginal

picture. See figure 14.

Since this concept was first introduced, many have

studied the effects of various unitary transformations and

block sizes on the image reconstruction quality and

bandwidth reductions. Some of the transformations examined

include the Karhunen-Loeve, Hadamard, Haar, Slant, and

Cosine transforms. The Karhunen-Loeve transformation,

consisting of a matrix of eigenvectors of the data to be

transformed, provides a total decorrelation of the block to

give the lowest distortion of any of the transforms. But

the problem with this transformation is the requirement of

an exact statistical knowledge of the image block to be

transformed, which is normally unavailable. Even if it is

available, the computation of the transform is slow and

complex. Sub-optimal approximations of the Karhunen-Loeve

transform have been made by assuming the original image to

be of a known specific statistical nature, such as a first-

order Markov process. If this type of assumption is made.

then the computation of the eigenvector transformation

matrix becomes fast and simple. Unfortunately this is much

38

,....."-' .' ."'..,......... . . .-.-.. i.-.



CHANNEL

2-Dim Transform Coding

Figure 14

3



inferior since the original images would not usually all be

of this nature, nor even throughout any one image.

More detailed discussions of the transformations may

*be obtained in Pratt 122]. Of the remaining transformations .

studied, it appears that the Cosine transform gives the next .

best performance, irregardless of the block size, followed

* - by the Slant, Hadamard, and Haar transforms. Algorithms of

these transforms exist and most are relatively fast.

Both the DPCM and transformation coding systems have

*-their advantages and disadvantages. The DPCM system is

relatively easy to implement, but produces an inferior

reconstruction as compared to that of transformation coding

systems. Unfortunately transformation coding systems

involve a more complex design. By combining the two in a

particular fashion, it has been discovered that the

advantages of both may be realized while minimizing the

disadvantages of each system alone.

*Habibi [19] proposed that a system be comprised of

the two coding schemes in such a manner that a one-

6 dimensional, instead of a two-dimensional, transform be

applied to each image block to decorrelated a sequence of

the picture data in one direction throughout the block. The

40
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transform coefficients are then taken across the block and

fed into the input of a DPCM system operating in the

orthogonal direction to that of the transform. One

dimensional transforms are fast and very easy to implement

.>. and combine with the DPCM system to give quick, reliable

performance. See figure 15.

As briefly mentioned in the previous chapter, several

variations of the original DPCM concept exist, each

providing certain advantages in particular applications.

One of the most useful, especially in digital image coding,

is that of ADPCM (Adaptive Diffeiential Pulse Coded

Modulation). With only a small increase in system

complexity, the prediction algorithm of the usual DPCM loop

can be made to adapt to the statistical variations of the

source, producing more accurate predictions for new data and

therefore better decorrelation.

The basic idea is to perform an analysis of the data

to be predicted in order to arrive at an optimal set of

coefficients for the autoregressive predictor. This

analysis and subsequent coefficient set are achieved by

introducing a learning period into the system. The data is

buffered from the ADPCM component for one learning period,

causing the system to no longer be real-time, but offset by

one learning period. During this time the data is examined

by means of such statistical tools as a Kalman filter, ARMA

42
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(AutoRegressive / Moving Average) model. or Stochastic

Approximation algorithm.

For a detailed, and thorough, analysis and comparison

of the aforementioned three predictors and predictors in

general, see the work of my colleague and co-investigator of

Hybrid / DPCM systems, Stratigakis [35]. The Kalman filter

is well known from Control and Estimation Theory. and its

derivation is prolific in the engineering literature [6],

[26], [27]. The Kalman filter is the best linear minimum

variance estimator and for the case of gaussian distributed

signal, noise, and initial state, it is the best of all

possible linear and nonlinear estimators [27].

The ARMA model is a method of determining a precise

statistical model of the sequence being analyzed, and the

estimates of the autoregressive coefficients is obtained by

. solving a set of equations involving n linear combinations

of the estimated autocorrelations of the sequence, known as

the Yule-Walker equations (51. The Stochastic Approximation

algorithm is similar to the Kalman filter in form and

operation. It is extremely fast but produces an inferior

estimation.

Unfortunately these algorithms do not always generate

a stable set of coefficients for a particular line. But by

making use of the partial autocorrelations of the

coefficient set, the stability of the shaping filter can be

determined and the coefficient set adjusted if needed. This

43
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process is called PARCOR stabilization. The stabilization

and adjustment occur as follows:

a) The partial autocorrelations of the

coefficients (p , i=l,n) are calculated.
i

b) If p > 1 for any i, then those coefficient
i

values are scaled to some magnitude less

than one and the partial autocorrelations

are recalculated.

c) The process iterates until all partial

autocorrelations achieve the requirement of

their magnitude restriction.

The procedure is therefore to take a row of

transformed picture data, apply the coefficient set

identification algorithm (Kalman filter, ARMA, or Stochastic

Approximation), and stabilize any instabilities in the

system by re-adjusting the coefficients to the predictor in

the ADPCM loop. Since the transmitter will make its

predictions on this set of coefficients, the set must also

be made available to the receive- for the ADPCM decoding.

It is therefore necessary to quantize and encode this

supplemental information into the data stream. Discussion

of this quantizer and all other quantizers for the hybrid

44--
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* system will be presented in Chapter Six.
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CHAPTER FOUR

Optimization of a quantized representation of signals

has produced considerable interest in quantizer research and

areas where rate-distortion considerations are of

importance. Fundamental to most of the research to date on

this problem are the works of Max [251 and Lloyd [24] in'

their developments of digital transmission systems which

minimize quantization error.

The signal to be quantized is assumed to be an

ergodic process of known probability distribution. By con-

sidering the input signal, S , as composed of an indexed
in

class of sets {R ... , R }, where:
1 N

R ={x <X<X , x =-oox = 1 (22)
i i+l 1 N+-

to which a corresponding set of representative values

(y ... , y } is assigned, an index function 6 (x), -- <x<-,
1 N

on the partition set {R .... , R } is defined as:
1 N '

7(x) = fi xR, l<i<N} (23)

46
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and a sequence of labels:

a(t ) = X(S (t)) (24)
i in i

representing the output signal, S , is generated for
out

transmission.

If a distortion measure on the quantization mapping

of partition sets to representative sets is defined as the

expected value of some differentiable function f(£), where

e is the quantization error, and the known probability

density of the input signal, S , is p(x), then:
in

D E f(S - S )I(25)
in out

Nf
f(x y.) p(x) dx

R"i

To minimize the distortion for a particular fixed

value of N, necessary conditions may be obtained by

differentiating the distortion (D) with respect to the

partition (R) and representative (y) sets and settingi i . -
C equal to zero.

47



Thus:

f X-i ~ (26)

1 -f(x -y )p(x) 0

1=2. *.,N

fJ(A-x p(X) dx (27)

X.

- -- p(X) dx =0

xi

implying:

f(x -y )=f(x -y ) I=2. .. ,N (28)

I f'(x -Y) p(x) dx =0 1 . ., (29)
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The choice of f is usually a metric function so that:

f (0) =0

(30)
f (X) f f(-X)

If it is required that Q(x) be monotonically increasing,

then (28) implies:

x -y x -y i =2. .. N (31)

and

(Yj + i1

x-------------------------i =2, ...,IN (32)

2

Usually the metric function is chosen to be the

squared metric:

2
*f(x) =x (33)

This results in:

(y + y
i i-i

Xi ------------------ i=21 .. N (34a)

2

or

y =2 x -y i=2? .. N (34b)

49
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and

x

f J (x - y ) p(x) dx = 0 (35)i
x

i

i = 1, ... , N :

In other words, y is the centroid of the area of p(x)i
between x and x

i i+l "
An iterative method may easily be implemented to

solve for the optimum, in the mean-squared-error sense,
threshold levels {x } and quantization levels (y } for thei i
known probability density function, p(x), via equations (34)

and (35). Figures of the optimum thresholds and

quantization levels for uniform and gaussian probability

distributions appear in figure 16.

* Once the set of thresholds and quantization levels

have been determined, any sample may be quantized by

determining the partition set to which it belongs and the

representative value for that set by equation (23).

The Max-Lloyd quantizer can now be made adaptive in
the same fashion as any other quantizer. A step-size

adjustment A (k) is defined such that the thresholds and

levels of the quantizer may easily be scaled to some

statistical variation estimate. The use of Max-Lloyd

50
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quantizers in an Adaptive Stochastic Picture Coding (ASPC)

system for various system parameters and data quantization

has been investigated and a detailed discussion of this.

system and its performance will appear in Chapters Six and

Seven.

.7-
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CHAPTER FIVE

VECTORQATIE DESIGN

As previously mentioned, quantizing blocks or vectors

of samples in lieu of scalar quantization approaches a more

accurate representation of the source, in a rate distortion

sense, subject only to vector length. By defining vector

quantization as a surjective mapping of K-dimensional input

vectors to corresponding representative vectors,

K K
Q:R .Y, YCR (36)

one can get an intuitive feel for the concept of vector

quantization. A typical two-dimensional vector quantizer

might appear as in figure 17. Each partition represents a

decision rule in the vector space. These partition sets and

corresponding representative vectors, X , define the vector

code book where each X is the centroid of the i partition
i

set.

Since this K-dimensional space must be partitioned

into a finite number of regions, it is appropriate to

examine the optimality criteria to be achieved to determine

the maximal rate distortion performance. Linde, Buzo, and

53
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Gray [231 have given a fundamental paper on the design of

vector quantizer algorithms. Their derivation is presented

here since the vector quantizer simulation done for this

report wa- based upon one such algorithm. If an N-level

quantizer is defined as optimal (or globally optimal) if it

minimizes the expected distortion, then x is optimal if
* Q

for all N-level quantizers x
Q

D(. ) \< D(X ) (37)
.,.Q Q

If D(A ) is only a local minimum, then x is said to be
Q Q

locally optimum.

Likening the distortion measure to that of Max and

Lloyd, the measure chosen for this report was the squared-

error distortion:

12
X Y x (38)-i , i- i i

between x, the sample vector, and 2, the representation

vector. However, as with Max and Lloyd, the derivation is

S- independent of the particular distortion measure chosen.

Given an N-level vector quantizer A defined by the
Q

geometric partitioning set P = { P , i=l,...,N} and
i
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constrained representation alphabet A = { y ; i=l,...NJ then
i

the expected value of the distortion becomes:

D({A,P}) = E [ d(,x ) I
Q

N

- E [ d(x,y) xP1 P Pr(x CP ) (39)
i l i i

i=l

where E [ d(x,y) lx P ] is the conditional expected
i | i

distortion given that x P

If a particular representation alphabet A is given,

A
but a partition is not, then a partition for this alphabet A

may be found by obtaining the mapping of each x into the y
i

A minimizing the distortion between the two vectors,

d(x, ). So the desired partition is found by choosing eachi '

vector such that this distortion is a minimum -- this type

of clustering is well known to those familiar with pattern

recognition techniques as "nearest neighbor" clustering.
.0

Anytime the lowest distortion is equal among a number of

vectors, any convenient tie-breaking choice may be made.

The partition found in this manner yields:

x e P 4 === d(x, ) < d(x ) Tj (40) -
i i J

or

D ( A, P (A)} ) - E min d (x,y) ] (41)
YEA

,56
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implying that when compared to any other partition, P:

D ((A, P (A)}) 4 D (D A, P(A)} ) (42)

] *S So an optimal partition set P may be found for any fixed

representation alphabet A.

Likewise one can determine a best possible

representation alphabet A for any given fixed partition set

P. If the distortion measure and distribution are such that

each set P with nonzero probability in K-dimensional

Euclidean space contains a minimum distortion vector (P) so

that:

E [ d(x,£(P)) Iz' P ( (43)

= min E [ d(x,y) x-CP

and is termed the centroid of the set P. Therefore no

representation alphabet A = { , ; i=1,...,N } yields

smaller distortion than the alphabet,

I (P) {AK(P );i=l,...,N} (44) "'

i

where each X(P.) is the corresponding centroid of partition

P since:
i

. 57
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N

([A PI) E d t vAv,y I'l1' (45)

i=l

N

> min E [ d(x,U) A P ] Pr(.xe P
i i

i=l u1

= D ({j(P) , PI)

*4

Therefore the optimal representation alphabet A = j(P) for

any fixed partition set P.

By using a combination of equations (41) and (45), a

method can be implemented for deriving a good quantizer

through successive iterations of these constraints given any

starting quantizer algorithms using this idea have been

proposed for both known and unknown distributions of vectors

[231. Given an initial training sequence of n vectors, an
R

M-level vector quantizer with M=2 R=0,1,... is derived

until an initial guess for an N-level quantizer is obtained.

The optimal N-level quantizer is then found using this

guess. The algorithm chosen for this report work is as

follows:
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(1) Initialization: Set M=1 and define

A (1)=j(A) where j(A) is the centroid of
0
the training set.

(2) Given the representation alphabet A (M)
0

containing M vectors, {. ,ilo..,M}, each
i

codevector y is used to produce two code
i

vectors +$and v - $ with 1 a fixedi i
perturbation vector. A new alphabet A of

{Y +$,, -B, i=l,...,M} with 2M vectors is
i i

now obtained. Let M-2M.

(3) If M=N, then the operation is complete and

the alphabet A =A(N) is used as the initial
0

reproduction alphabet for the N-level

vector quantizer and processing continues

with (9). If M is not yet equal to N. then

proceed to (4).

(4) Set 1=0 and D =o and eps>0 some

threshold. Initialize A =A(M).
0A

(5) Given A ={. ,i=l,...,M}, find the minimum

distortion partition P(A )={P ; i=l,...,N}

of the training sequence:

.: x P if y., <d (,x. .y

k
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U (6) Find the average distortion for step 1 by:

D =D({A P¢A )})

n- 1'

,min d(x , )

j=0

(7) If (D -D )/D 4 eps,t then A is the

reproduction alphabet for the M-level

quantizer. Set A (M)=A and continue at
0 -(2). If the (D -D )/D > eps continue to'"1 -1 1 1

.. (8) .

(8) Find the optimal representation alphabet:

P(A 11='P i=l,...,M}
1 i

for P(A

where each A(P ) is the centroid of

partition P . Set A =A(P(A )). Replace
i 1+1 •1=1+1 and continue at (5).

(9) Now that the initial N-level vector

quantizer has been determined, A (N), the
0

same procedure as outlined in (5) through
44 (8) is performed for an N-level quantizer

until the change in distortion between

code book calculations drops below a

specific threshold or a maximum number of

60
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iterations occurs. The resultant code book

should yield a performance within the

designated distortion performance.

-4 The scheme in which this algorithm is used will be described

in the following chapter on system configurations.
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CHAPTER SIX

SYSTEM CONFIGURATIONS AM PROGA DESCRIPTIONS

I. ASPC / Forward Adaptive Scalar Max

If a good data rate versus distortion performance is

to be achieved in a hybrid/DPCM system (also known as

Adaptive Hybrid Picture Coding - AHPC - or Adaptive

Stochastic Picture Coding - ASPC) it is necessary to examine

the transmission requirements for the proper quantizer

selections. A block diagram of the proposed transmitter and

receiver is shown in figures 18 and 19.

This is the basic design for an AHPC/ASPC system with

an autoregressive predictor (P) and a forward adaptive

residual Max quantizer (Q5). The operation is as follows:

1) The image desired to be transmitted is broken

into strips, each of size BLK X NS where BLK is

the desired transform block size and NS is the

number of samples in an image line.

2) A series of NS columns are passed through a

forward unitary tr.nsformation for each strip,

producing a strip of transformed picture data
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which has been decorrelated column-wise.

3) Each transformed image line is taken (row-wise)

singly and put into the first buffer, BUFFERI.

4) This data line is taken in parallel from BUFFER1

and the optimal predictor coefficient set {a}

for that line is obtained through a Stochastic

Adaptation method (Kalman filter, ARMA,

Stochastic Approximation) which also produces

the mean estimate of the line, . Both the

coefficient set [a }, i=l,...,n, and mean
i

estimate are quantized via Q1 and Q2 for
A

transmission, {a} and j , and made available
0 SQ

to other parts of the system.

5) Since the predictor in the ADPCM loop bases its

prediction on n past values contained in an

internal shift register, this register must be

initialized at the beginning of each line to

produce a sensible prediction of the first few

values. The quantized signal mean estimate is

used for this purpose at both transmitter and

receiver stages.

6) The values are fed serially form BUFFER1 after
14-

the coefficients have been identified for that

line. While the system transmits this data

line, the next row of transformed image data is
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passed to BUFFER1.

7) As each value is taken from BUFFER1 it is both

passed to another buffer, BUFFER2, and an ADPCM
loop with perfect quantization. This loop is

necessary in any forward adaptive quantization

scheme since a variance or step-size estimate --

must be obtained prior to quantization. The

mean of the residuals is also obtained so that

the quanti~er may be adjusted to perform about

that mean estimate. Since the residuals -

produced by the Kalman filter and ARMA models

should be gaussian, an N-level scalar Max

quantizer is used to quantize the residuals in

05 with an expected qaussian normal probability

distribution of mean zero and variance one. The

quantizer thresholds and representative levels

are all known for this optimum quantizer a

priori to both transmitter and receiver. These

thresholds and levels are scaled for each line S

of residuals by a step size determined as the

standard deviation estimate (obtained from the .* 4

2
quantized variance estimate a The _ I

eQ
receiver will need the residual mean and

estimate for each line, so only the quantized
2

estimates, and a , are used by the _-I
eQ eQ
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transmission stage and encoded in the data

stream for the receiver. A single variance

estimate for each line is assumed sufficient for

the statistical variation description of that

entire line.

8) The values are taken from BUFFER2 and the final

ADPCM loop, the residuals of the prediction, e,

are acquired and quantized, e , and passed to
Q

the coder. The quantized residuals, e , are
Q

also added to the prediction, r, so that signal

estimates corrupted by quantization noise, s
Q

are obtained for the. predictor's n-stage past

value shift register.

e= s- r- g (46)
SQ

e =Q(e) = e + q
Q n

A

s= e +r + 1
Q 0 SQ

s +q
n

9) All pertinent data required by the receiver for

proper reconstruction of the image is then

encoded and passed through a digital channel to

the receiver.
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10) At the receiver stage, the information is

decoded into its various components. The
A°.4k

quantized signal mean estimate, A SQ, is used to

initialize an n-stage shift register in a

predictor here, and the quantized coefficient

set for this data line is provided to the

predictor.

11) Each prediction value, r, is added to the

received quantized residual, e , and adjusted to
Q

the appropriate mean to obtain the signal

estimate of each transformed pixel.

s = e + q +p = s + q (47)
Q n SQ n

12) These values are used to rebuild the original

transform-domain strips.

13) The strips are finally passed through an inverse

column transformation and pieced together to

reconstruct the original image.

Besides the quantizer used for the residual

sequence, Q5. four other quantizers were needed for the

various system parameters, none of which were to be
a-.

.-- adaptive. The quantizers were uniquely designed for each

* parameter. The quantizer for the coefficient set, QI, was
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designed as an 8-bit uniform quantizer of the limits of +/-

1.75. These values as were all quantizer parameters for

quantizers 01-Q4 were determined initially by estimation and
finalized through experimentation.

The quantizer for the signal mean, Q2. was originally

designed as a 9-bit fixed Max-gaussian quantizer which used

two sets of parameters. One set was used with those image

rows occuring at the beginning of each block of transformed

values since such rows contained the highest energy - and

thus more widely variant - transform coefficients. The

values used for this set were 128 X BLOCKSIZE for the mean

estimate and a variance estimate of about 130,000. The

estimation of 128 X BLOCKSIZE for the signal mean came from

the median of the 256 possible gray levels in a

monochromatic image (128) summed over the block. The second

set was used for all remaining data lines of the block and

consisted of a zero mean estimate and a variance estimate of

350. It was later determined that for a particular

transformation, these signal mean values could be

approximated to eliminate the necessity of quantizing and

transmitting this parameter (the approximation being known a

priori to both transmitter and receiver) to actually improve

the system's performance. In the case of the Cosine

transformation, signal mean estimates of 2750 for lines at

the beginning of a block and 0 for all other lines were

used. This elimination of the need to transmit the signal
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mean gave a data rate savings of 9 bits per line. These

values would, of course be different for other

transformations. Exact system data rates will be calculated

in the next chapter.

The residual mean estimate was assumed gaussian over

the entire image and thus a time invariant Max quantizer,

Q3, was used here. It was of 6-bits in resolution with mean

of zero and variance of 150. The residual variance estimate

quantizer, Q4, was uniform from 0 to 40,000 for the ARMA and

Kalman filter estimators, and 0 to 100,000 for the

Stochastic Approximation estimator. Since this parameter

yielded the step-size estimate for the adaptive residual

quantizer, a resolution of 9 bits was used. The reason for

the wider distribution of the variance for the Stochastic

Approximation routine is that it performs only a quick

estimation of the predictor coefficients, thereby causing

the generated residual sequence to be of a more variant

nature.

II. ASPC / Backward Adaptive Scalar Max

As described before, a system can be used such that

no extra quantizer information, such as a step-size

adjustment, is needed. This system would use the backward

adaptive quantizer which acquires its step-size adjustment
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from previously quantized values readily available at both

transmitter and receiver stages.

It was seen in Chapter Two that there are as many

forms of step-size algorithms for the backward adaptive

quantizer as for the forward adaptive quantizer. The one

selected for this study was that of equation (4), reprinted

here for convenience:

1-a

A (k) = - -al eQ(k-i) (48)

a"1-

2

This particular formula for the step-size was chosen for its

similarity to the autoregressive prediction being performed

in the ADPCM loop. Choices of scalars a and a are
1 2

determined experimentally for particular system. The

simulation performed for this report used values of a =0.7'"" 1

and a =1. Future inquires into this algorithm could
2

possibly discover more suitable parameters, but these were

judged significant and typical for this comparison of

quantization schemes.

With a backward adaptive quantizer, the transmitter

of figure 18 is modified somewhat since a prior residual

variance is no longer needed. However the residual mean is

still required for proper orientation of the residu~l

quantizer. The system does require additional circuitry

* since an estimate must be made from previous quantized
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values. The resulting transmitter block diagram is depicted

in figure 20. The receiver block diagram remains as

shown in figure 21.

III. ASPC / Vector Quantization

An extension of the system using scalar quantization

techniques of figures 18 and 19 results in the vector AHPC

system. called VASPC, as depicted in figures 22 and 23.

The operation of the VASPC system is nearly identical with

that of the ASPC system -- with the obvious exception of the

vector quantization.

The original image is still split into strips of the

transformation blocksize by the image width and forward

transformed columnwise. But now instead of applying ADPCM

on a single line at a time, the system has the ability to

handle any number of lines at once. Since the usual image

column length is a multiple of 2, and the transformation

blocklength also a multiple of 2, say 16, the vector

dimensions examined are K = 2, 4, 8, 16. It must be kept in

mind that any practical size can be specified, but any

additions in dimension increases the corresponding vector

code book / alphabet as well as system complexity.

The coefficient set for each line is determined in

precisely the same fashion as the scalar AHPC case. The
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first vector ADPCM loop figured in the diagram serves

another purpose than that of the scalar case. Recall that

previously this particular loop was for the determination of

an estimate of the residual variance of each transformed

image line. In the VAHPC system this loop must aid in

determining the whole vector quantizer code book. K lines

are operated on at once in parallel and are considered to be
th I..

NS (number of samples per line) vectors in the K

dimension. A corresponding predicted K-dimensional vector

is produced for each, and the resultant residual vectors are

collected to form a training set for the design of the

vector quantizer.

= S - i=1,...,NS (49)i i i

S= e } (50)
i i=l, ... ,NS

This set of training vectors is then fed into the

design algorithm to produce a quantizer for this strip of K

X NS residuals. Since this code book must be available to

the receiver, a mean estimate vector and a variance estimate

vector for this cede book are generated, and a K-dimensional

Max gaussian quantizer scaled to these statistical vectors

is employed to quantize and transmit the code book to the

77
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receiver. For small vector dimensions the scheme of design

and transmission could yield an enormous overhead if it is

done for every NSF (number of image lines) / K size strip. - -

Instead, after each code book is designed, each codevector

is compared with each codevector of the previous K X NS

strip code book. A distortion measure is obtained from this

comparison, and the present code book is shuffled such that

those vectors achieve a minimum distortion. Those falling

below a specific threshold are not transmitted. No vector

code book is necessarily similar to the previous one, and

therefore a vector which need not be transmitted does not

necessarily have the same index as the vector it resembles

of the previous code book. Because of this fact, it is

necessary to give an index to the old code book for which a

vector is being replaced. This indexing itself constitutes

an overhead, so a decision must be made as to whether it is

better to transmit a whole new code book, a partial code

book, or retain the previous code book. This decision also

causes a small 2 bit / code book overhead, but is unchanging

throughout the picture. This decision takes the form of:

B
K *NBE *2 =B *NUMVTR + K *NBE *NUMVTR (51)

= (B + K*NBE) NUMVTR

-7
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" - where:

K = Vector dimension

NBE = Number of bits used to quantize each

-"' element in each vector.

NUMVTR = Number of vectors needing to be

transmitted

So for a 4 bit vector quantizer, B=4 (16 codevectors) and

the decision becomes:

2 NUMVTR > 12

4 NUMVTR > 13

8 NUMVTR > 14

16 NUMVTR > 15

and for a 16-dimensional quantizer, a partial code book is

transmitted even if only one vector is similiar to a

previous vector. If the whole book is to be transmitted,

the indexing is dropped. For a comprehensive data rate

calculation, refer to Chapter Seven.

IV. ASPC / Forward Adaptive Scalar Max with "Zeroing"

The last configuration considered is actually a

*degenerative form of the first ASPC configuration with a
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forward adaptive scalar Max gaussian residual quantizer.

This system was simulated only to give an approximation of

AHPC performance at non-integer bit rates (neglecting

overhead). Since there is no way to design a Max quantizer

with 0.5. 1.5, 2.5 or any non-integer bit resolution, a

method called conditional-replenishment or "zeroing" is used

to get a more generalized picture of the scalar AHPC rate

distortion performance. Even if one could make such a 1.5

bit quantizer how would one transmit 1.5 bits?

Since only a performance estimate is desired, it

is suitable to design for an effective performance. The

procedure is simply to not transmit portions of the residual

sequence, thus reducing the data rate. So a residual of

zero, or a perfect prediction is assumed, and the subsequent

error in the next prediction is expected to be corrected in

the residual, which is transmitted. Residual sequences

might then appear:

e 0 e 0 e 0 ...
1 3 5

e 0 0 e 0 0 e 0
1 4 7

e 0 0 0 e 0 0 0 e 0
1 5 9

etc.

I80
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The effective bit rate is then:

B Log N (# bits in res. qntzer)
2

----------------------- ---------------------------------
Number of Number of sharing residuals
sharing res.

Of course the performance is quite inferior at all

data rates to the normal AHPC system since the coefficient

identification routines are designed for a different

sequence. Instead of the n-stage past value shift register

containing samples perturbed only by quantization noise:

s = e + r =e + r + q (52)
Q Q n

there is the additional burden of a previous prediction

error:

s = e + r + e =e + r + q + e (53)
Q Q n

and the prediction scheme uses coefficients which have not

been optimized for this sequence. But the routine still

yields a general "feel" of the scalar AHPC rate distortion

performance at odd data rates.
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V. Program Descriptions

The computer programs used for the simulations

presented here are slightly lengthy but have been designed

in as modular a fashion as possible to achieve a flexibility

in design changes and alternatives.

The transformation program consists of a driving

program and a set of transform subroutines. The image to be

used is selected from the disk on which it has been stored,

and provided with the desired transformation, blocksize, and

transformation direction(s) (row or column), the image is

transformed and the resultant transformed image is placed on

disk. All disk operations are performed with a subroutine

called DISKIO which handles the image files a line at a time

in any desired manner.

The main transmitter / receiver program consists of a

small main driver segment to read the original transformed

image and write the received and reconstituted transformed

image to disk. The main subroutine is called COMPMC which

performs the simulation of ADPCM transmission, reception,

and reconstruction. Minor changes are introduced into each

run of COMPMC which performs the simulation of ADPCM

transmission, reception, and reconstruction of the

transformed image data. Minor changes are introduced into

each run of COMPMC for the specific coefficient prediction

schemes and all scalar quantizers.
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Subroutines which are also required include:
., 

4.

MAXQTZ - subroutine for designing any N-level

scalar Max / Lloyd quantizer using the

techniques derived by Max.

PARSBL- subroutine for the partial auto-

correlation stabilization of the predictor

coefficients.

CENTRD - subroutine for finding the centroid level

in a probability distribution between two

thresholds for MAXQTZ.

INTGRL - a 16-point gaussian quadrature integration

subroutine required by both CENTRD and

MAXQTZ.

Functions used are:

UNIFRM - function to provide an N-level unifromly

distributed quantization between two

specified intervals.

FUNC - function to generate a desired probability

denstity function.

SQERR - function to generate the squared error

distortion of a value in a particular

probability distribution.

QNTZ - function to quantize a sample via Max's

definition given a variance estimate and

83
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the quantization thresholds and levels

produced by MAXQTZ. The step-size scale

factor is determined as the square-root of

the variance estimate (std deviation).

The VASPC vector program uses a subroutine called

COMPV quite similar to COMPMC. Special provision had to be

made for the vector quantizer but the general flow of the

routine was the same. Besides the aforementioned

subroutines, COMPV requires:

VQDSN - subroutine for random vector quantizer

design based on a given training set.

VECQNT - subroutine to determine the representative

or quantized value of a vector via the

nearest neighbor" approach.

COMPMC and COMPV both require subroutines for the

desired coefficient identification routine, with the

exception of the Kalman filter routine which had been

directly incorporated into one version each of COMPMC and

COMPV. Other identification routines require:

"I

FTAUTO- IMSL subroutine for finding the auto-

correlations of a given sequence.

FTARPS - IMSL subroutine for generating a set of

84
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coefficients for a designated Auto-

Regressive Moving Average (ARMA) model

given the autocorrelation produced by

- . . FTAUTO.

STAPRX - subroutine for determining the prediction

coefficients via the Stochastic

Approximation algorithm.

Finally, the received and reconstructed transformed

images are inverse transformed with the same original

transform program package and the final image is placed on

disk. Programs were also used to calculate the signal-to-

noise ratio between the original and final images and

generate the corresponding error histograms. These programs

are SNR and HISTI, respectively. General purpose routines

were used for the transfer of images form disk to tape and

vice versa for subjective viewing on the COMTAL Vision One

Image Processing system of the Visual Interactive Processing

laboratory, a part of the University of Arkansas'

Engineering Experiment Station. Flowcharts and program

listings are included in Appendix B, and the reader is

referred to this appendix for further information on the

details of the simulations.
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CHAPTER SEVEN

RESULTS CONCLUSIONS

A number of orthogonal transformations exist which

could have been used in the simulations, but the aim of this

study was not the comparison of transforms for AHPC. The

simulations mentioned in Chapter Six were performed for two

types of transforms: the Hadamard and the Cosine. These

two were chosen for their frequent use in other work in this

area of research and widespread use in current scientific

publications. Further, the Hadamard represents a transform

of average complexity and performance, while the Cosine's

performance appears to excel in transformation coding

systems (22]. Finally these were the two transforms used by

Habibi [191 if his original work on Hybrid / DPCM systems.

Only the Cosine was used after it was determined

experimentally to perform better for AHPC systems than the

Hadamard for any coefficient identification scheme.

Two images were used as originals in the initial

stages of the system simulations. These are ,.e 128 X 128

monochrome image of the well-known MIT girl used in much of

the literature, and the 256 X 256 monochrome image of an
aerial photograph of a city. See pictures <1> and <2> in
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Appendix A. AZPC simulations were performed on each image

with both transformations and with and without PARCOR

stabilization to determine the best overall coefficient

identification / transform scheme to use in the quantizer

comparison. It was determined that the best overall

performance was given for the cosine transformed city image

with a set of 3 predictor coefficients, controlled w-ith

PARCOR stabilization. See figure 24. All ASPC simulations

on this table were performed with a transform block size of

16, a 3-bit forward adaptive residual Max gaussian

quantizer, an 8-bit uniform coefficient quantizer, a 6-bit

Max gaussian residual mean estimate quantizer, a 9-bit

uniform residual variance estimate quantizer, and a 9-bit

Max gaussian signal mean quantizer. These yield fairly high

data rates, but a good objective viewpoint of system

performance.

The cosine-transformed city image was then used in

determining the best overall predictor performance. As seen

from figure 25, the Kalman filter and ARMA model resulted

in almost identical rate distortion performance and were

significantly superior to the Stochajtic Approximation

algorithm. The Kalman filter was then chosen to perform the

coefficient identification for the quantizer comparisons.

The Kalman filter adaptive identification process is

89
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summarized [21] :

Message Model A(k+l)=A(k) (53)
T

Observation Model s(k+l)=R (k)A(k)+e(k+l)
A 'AP

Identification eqn A(k+l)=A(k)+K(k+l)e(k+l)

V,(k)R (k)
A p

Gain equation K(k+l) = --------------------
V +Rr (k)V,(k)R (k)
Z p A p

Variance eqn V (k+l)=[I-K(k+l)R T(k)]
A p

* (k)
A

where at time k:

Ak) - Coefficient vector

s(k) -sample value

e(k) -residual value

R (k) -past value vectorPT

R A(k) - predicted value
p

K(k) - Kalman gain

V - error variance = 100
Z

V (k) - a posteriori error variance
A

A graph depicting the performance of each

quantizer routine is shown in figure 26. The corresponding

images appear in pictures < 3 - 27>. As predicted by the

theory, the vector quantizer produces the best overall

subjective and quantitative performance, followed closely by

*the forward adaptive scalar version and a quite inferior

90

-46-

" " 9



-. 7.~~. -77 7 -1 77; 77 77-7

- ~ ~~~~ .. xA
1 z . . - -

0 N
-jS

< CN

>. <

N U. 0V

P---. ru

E ..4

(D U) WLD C

WfH(3Z<4 -o ZOHMfW am



* . . .,

77 7

backward adaptive scalar version.

Although there does not appear to be a consensus on

the calculation of a signal-to-noise ratio performance for

images -- which would greatly aid the comparisons and

evaluations of new and different techniques -- a ratio of

signal variance to noise variance was arrived at as a good

critical evaluation. The data rate calculations are as

. . follow:

Forward Adaptive Scalar Max Residual:

Coeff. reqs. 256 lines * 3 coef/line * 8 b/coef

Res. Var. 256 lines * 9 b/line

Res. Mean 256 lines * 6 b/line

Res. Qntzr R bits/pel

==> R b/pel + 0.15 b/pel overhead

Backward Adaptive Scalar Max Residual:

Coeff. reqs. 256 lines * 3 coef/line * 8 b/coeff

Res. Mean 256 lines * 6 b/line

Res. Qntzr R bits/pel

==> R b/pel + 0.12 b/pel overhead

92
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j
Vector Quantizer:

No Code book transmission

2 Number of no transmissions (decision)

Whole Code book transmission

2 * Number of full transmissions (decision)

Log N * K * 7b/elem * Number full trans.
2

K * 9bits * Number full trans. (variance)

K * 6bits * Number full trans. (mean)

Partial Code book transmission

2 * Number of partial transmissions (decision)

Log N * K * 7b/elem * Number part. trans.
2

K * 9bits * Number part. trans. (variance)

K * 6bits * Number part. trans. (mean)

==> Actual data rate must be calculated

interactively during system simulation.

These systems show the feasibility of various digital

image coding and transmission schemes. Vector quantization,

although a relatively new technique, appears to have great

promise in any such data reduction system. As seen here the

AHPC system can yield good results at low data rates.

Pictures and error histograms supporting this conclusion

appear in Appendix A. All signal-to-noise ratio
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calculations were made as a ratio of the variances:

(s - )

SNR = 10 Log -2-: --1 (dB) (54)

2Z

e..

Euture Researc

The AHPC system has been shown to give good rate

distortion performance. The limiting factor has also been

shown to be the quantizer performance. Optimization of any

initial parameters such as those used in the identification

routines may improve performance, as well as determining any

better step-size estimators. Any future research endeavor

into AHPC-type systems should therefore include any new

thoughts as to the possible evolution of quantization

theory. Vector quantization research appears the most

lucrative for low data rate performances. Although other

forward adaptive and backward adaptive quantizer algorithms

may exist which yield better results than those presented

here, these are figured typical and any such scheme appears

limited by the one-dimensional scalar quantization in
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adaptive systems.

One possibility of future research efforts is the

incorporation of the AHPC system into a real-time

transmission of sequential images. Special quantization

techniques may be employed in such systems which take . -

advantage of previous image frame information.

Considerations of any other interframe knowledge could

improve an intraframe performance of AHPC.

A problem which might also be scrutinized is that of

an introduction of noise into the system. What are the

effects of channel errors on the receiver's reconstructed

image? How does initial noise in the original image and

noise in the image in the transform domain affect system

reliability? Perhaps various filtering techniques could be

applied at points in the system to limit image

deterioration. Only more research can provide the answers

to these questions.

f.
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MAIN DRIVER

READ
TRANSFORMED

IMAGE

CALL COMPMC

WRITE

RECEIVED
IMAGE

STOP
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CGMPMC

BREAK IMAGE
INTO LINES

PERFORM

COEFF ID

DETERMINE

MEAN AND VAR
ESTIMATES

OF

RESIDUALS

SCALE QNTZR

AND

QUANT RES

SIMULATE
TRANSMISSION

AND
RECEPTION

RETURN
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SMain Driver Program for Transforms *

EXTERNAL HADGEN,COSINE,HAARGN,KLGEN,FOURGN,DUMMY,SLAGEN
INTEGER HAD/4HHAr /,HAAR/4HHAAR/,COS/4HCOS /,OTYPE, OBSZ,

1 SLAN/4HSLAN/,KL,/4HKL /,FOUR/4HFOUR/,ID/4HID/

COMMON/CODPRM/ IR, IC, IBSZ ,NTYPE,OBSZ ,OTYPE, IBLKSZ
COMMON /CORE/ TEST(1024)
REAL XIN(256,256)

COMMON/B/ IDA,N

- . ISIZE=16
KFFT=0
IBSZ=16
OB S Z=16

WRITE(6,200)
200 FORMAT('0',//,'A A A A A A A A A A A A A A A A A A A A A')

WRITE(6,201)
201 FORMAT('10',/

DO 3000 KKK=1,1
READ(5,10) (ITYPE,M,N,IBLKSZ,IR,IC,NTYPE,LIPT,OTYPE,LOPT)

10 FORM4AT(1X,A4,1X,215,1X, 13,1X,212,1X,A4, 13,1X,A4,13,1X, Il)
IF(ITYPE.EQ.HAD) GO TO 100
IF(ITYPE.EQ.HAAR) GO TO 110
IF(ITYPE.EQ.COS) GO TO 120
IF(ITYPE.EQ.SLAN) GO TO 130
IF(ITYPE.EQ.KL) GO TO 140
IF(ITYPE.EQ.FOUR) GO TO 150

20IF(ITYPE.EQ.ID) GO TO 160
20WRITE(6,25)ITYPE

25 FORMAT(1H1,//,133(1H?),//,6X,A4,lX,'TRANSFORM NOT ALLOWED'
1 //,133(1H?))

100 CALL XFORMB(HADGEN,M,N,LIPT,LOPT,XIN)
GO TO 170

* 110 CALL XFORMB(HAARGN,M,N,,LIPT,LOPT,XIN)
GO TO 170

120 CALL XFORMB(COSINE,M,N,LIPT,LOPT,XIN)
GO TO 170

130 CALL XFORMB(SLAGEN,M,N,LIPT,LOPT,XIN)
GO TO 170

140 GO TO 20
150 KFFT=1
160 CALL XFORMB(DUMMY,M,N,LIPT,LOPT,XIN)
170 WRITE(6,180)ITYPE,IR,IC

*180 FORMAT(1H1,//,133(1H$),//,45X,A4,1X,'TRANSFORM COMPLETED',
1 /,45X,'IR=',I2,/,45X,'IC=',I2,//,133(1H$))

* .888 REWIND 3
* IF(KKK.NE.1) GO TO 3000

DO 72 I=1,256
72 READ(3)(XIN(I,J),J=1,256)

REWIND 3
3000 CONTINUE
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SMain Driver Program for Transforms

STOP
* END
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*** Subroutine for Transformations ***

SUBROUTINE XFORMB(RTN,M,N,LIPT,LOPT,DATA)

C PURPOSE: MAIN PROGRAM / TRANSFORM SUBROUTINESC INTERFACE.

C RTN = TRANSFORMATION TO BE USED.
C MXN = IMAGE DATA SIZE (M BY N)
C LIPT = DATA LINE INPUT DISK UNIT NUMBER.
C LOPT = DATA LINE OUTPUT DISK UNIT NUMBER.
C DATA = IMAGE DATA

C USER NOTE: BE CERTAIN TO INCLUDE ALL NECESSARY COMMON
C STATEMENTS IN MAIN PROGRAM.

EXTERNAL RTN
REAL A(1024),DATA(M,N)
INTEGER OBSZ,OTYPE
COMMON/FT/ KFFT
COMMON/CODPRM/ IR, IC, IBSZ ,NTYPE,OBSZ ,OTYPE, IBLKSZ, IFLAG
MAXRC = (I+KFFT)*IBLKSZ*N
IF(MAXRC.GT.32800) GO TO 500
IF(KFFT) 10,10,20

10 CALL BLKFRM(RTN,M,N,LIPT,LOPT,DATA)
RETURN

20 CALL CBKFRM(RTN,M,N,LIPT,LOPT,IBLKSZ,DATA)
RETURN

500 MXCORE =(MAXRC * 4)/1000
WRITE(6,501) MXCORE

501 FORMAT(iH1,132(IH*),//,16X,I15,'K REQUIRED, LINE.BY LINE',
*INOT YET IMPLEMENTED' ,//,133(1H*))
RETURN
END
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- Subroutine to Break Image into Blocks ***

SUBROUTINE BLKFRM(RTN, M, N, LIPT, LOPT, DATA)

C PURPOSE: IMAGE BLOCK FORMATION AND MANIPULATION.
C RTN = TRANSFORMATION TO BE USED.
C MXN = IMAGE SIZE (M BY N)
C LIPT = LINE INPUT DISK UNIT NUMBER.
C LOPT = LINE OUTPUT DISK UNIT NUMBER.
C DATA = IMAGE DATA
C IFLAG = 1 >>> KL TRANSFORM
C IFLAG <> 1 >>> ALL OTHER TRANSFORMS

.* C USER NOTE: BE CERTAIN TO DUPLICATE ALL COMMON STATE-
C MENTS.

EXTERNAL RTN
REAL DATA(IBLKSZ,N) ,A(1024)
REAL*8 T(16,16)
INTEGER OBSZ, OTYPE
COMMON/CODPRM/ IR, IC, IBSZ ,NTYPE, OBSZ ,OTYPE, IBLKSZ, IFLAG
COMMON/KLCOM/ T, IUNIT
IF(IFLAG .EQ. 1)REWIND IUNIT
DO 50 LINEI=1,M,IBLKSZ
DO 20 I=l,IBLKSZ
LINE = LINE1 + I - 1
CALL DSKIO(A,N,LINE,1 ,LIPT,NTYPE)
DO 10 J=1,N

10 DATA(I,J) = A(J)
20 CONTINUE

DO 30 IBLK=1,N,IBLKSZ

C SOME SPECIAL I/O HANDLING OF EIGENVECTOR TRANS-
C FORMATION IF KL TRANSFORMATION. (IFLAG = 1)

IF((IR.EQ.-l.OR.IC.EQ.-1).AND.(IFLAG.EQ.l))READ(IUNIT)T
CALL RTN(DATA(I,IBLK),IBLKSZ,IBLKSZ,IR,IC,IBLKSZ,IBLKSZ)

30 IF((IR.EQ.1.OR.IC.EQ.1).AND.(IFLAG.EQ.1))WRITE(IUNIT)T
DO 50 I=1,IBLKSZ
LINE = LINE1 + I - 1
DO 40 J=1,N

40 A(J) = DATA(I,J)
50 CALL DSKIO(A,N,LINE,0,LOPT,OTYPE)

RETU RN
END
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SSubroutine to Handle Disk Input /Output

4 SUBROUTINE DSKIO(A,N,LINE,RW,UNIT,TYPE)

C PURPOSE: READS AND WRITES INFORMATION TO AND FROM THE DISK
C A LINE AT A TIME
C A=DATA YOU WANT TOR READ OR WRITE
C N=DATA VECTOR SIZE
C LINE=DATA LINE NUMBER
C RW=READ/WRITE FLAG
C UNIT=DISK UNIT NUMBER FOR I/O OPERATION -

C TYPE=DATA TYPE(E.G. INTEGER*2,REAL*4...)

INTEGER TB(100)/100*0/
INTEGER RW,UNIT,TYPE,C4(1024) ,TEST2/4HIN*2/,TEST4/4HIN*4/
INTEGER*2 B2(1024)
REAL A(N)
IF(LINE.GT.TB(UNIT)) GO TO 10
TB(UNIT) = 0
REWIND UNIT

10 TB (UNIT) = TB (UNIT) + 1
IF(RW.EQ.0) GO TO 500
IF(TYPE.NE.TEST2) GO TO 20
READ(UNIT) (B2(I) ,I=l,N)
DO 15 I=1,N

15 A(I) = B2(I)
RETURN

20 IF(TYPE.NE.TEST4) GO TO 30
READ(UNIT) (C4 (I) ,I=1,N)
DO 25 I=1,N

25 A(I) = C4(I)
RETURN

30 READ(UNIT) (A(I),I=1,N)
RETU RN

500 IF(TYPE.NE.TEST2) GO TO 520
-' DO 515 I=1,N

515 B2(I) = (A(I)+.5)
WRITE(UNIT) (B2(I) ,I=1,N)
RETURN

520 IF(TYPE.NE.TEST4) GO To 530
DO 525 I=l,N

525 C4(I) = A(I)
WRITE(UNIT) (C4(I),I=1,N)
RETURN

14 530 WRITE(UNIT) (A(I),I=1,N)
RETURN
END
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-* Subroutine for Hadamard Transform *

SUBROUTINE HADGEN(C,MC,NC, IR, IC,LR,LC)
C
C COMPUTES 2 DIM. HADAMARD TRANSFORM
C OF MATRIX.
C C = INPUT/OUTPUT MATRIX
C MC=#OF ROWS OF C
C NC=#OF COLUMNS OF C
C IR = 0 FOR NO ROW TRANSFORM
C IC = 0 FOR NO COLUMN TRANSFORM
C

REAL C(LR,LC)
COMMON /CORE/A(1024)

C
C COLUMN TRANSFORM
C

IF ( IC .EQ. 0 ) GO TO 120
CALL POWER( MC , LMC
DO 110 N=I,NC

C
C FOR EACH COLUMN TRANSFORM ELEMENTS 1 THROUGH MC
C

DO 111 IZAP=1,1024
111 A(IZAP)=0.

DO 112 M=1,MC
A(M) =C(M,N)

112 CONTINUE
CALL FHT (LMC, A)

DO 115 M=1,MC
C(M,N)=A(M)

115 CONTINUE
110 CONTINUE
C
C ROW TRANSFORM
C
120 IF ( IR .EQ. 0 ) RETURN

CALL POWER( NC , LNC
DO 125 M=1,MC

C
C COPY ROW M INTO ARRAY
C

DO 130 N=1,NC
130 A(N)=C(M,N)

CALL FHT(LNC,A)
DO 140 N=1,NC

140 C(M,N)=A(N)
125 CONTINUE

RETURN
END
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**Fast Hadamard Transform**

SUBROUTINE FHT (M,X)
DIMENSION X(1)
N=2* *M
NH=N/2
NHP=3*NH
NM= N-i
DO 100 L=1,M
LTEST= (L/ 2) * 2
IF(LTEST.EQ.L) GO TO 200
JJ=0
JJN=NH
JK2=N
JK1=NM5
GO TO 300

200 JJ=N
JJN=NHPd
JK2=0
JKI=-l

300 DO 100 J=1,NH
JJ=JJ+1
JJN=JJN+l
JK1 =JK1 +2
JK2=JK2+2
X(JK1) = X(JJ) + X(JJN)
X(JK2) = X(JJ) - X(JJN)

100 CONTINUE
MTEST= (M/2) *2
IF(MTEST.EQ.M) GO TO 400
DO 500 I=1,N

500 X(I)=X(N+I)
400 RETURN

END
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*** Fast Cosine Transform *

SUBROUTINE FCT(INPUT, ISIZE, ITYPE)
C
C THIS SUBROUTINE COMPUTES THE COSINE TRANSFORM OF DATA STORED
C IN AN INPUT ARRAY AND RETURNS THE RESULTS IN THE SAME ARRAY.
C THERE IS A CHECK MADE SO THE TABLE IS ONLY CALCULATED THE
C FIRST TIME A CALL IS MADE, OR IF ISIZE CHANGES.
C MAXIMUM SIZE ARRAY = 256 ELEMENTS
C
C INPUT = INPUT/OUTPUT ARRAY
C ISIZE = NUMBER OF ELEMENTS IN INPUT/OUTPUT ARRAY
C ITYPE: 1= FORWARD TRANSFORM
C -1= INVERSE TRANSFORM
C

REAL S(128)
REAL COSINE(255),SINE(255),INPUT(512),OUTPUT(1024)
INTEGER INV(128),MM(3),OISIZE,OTYPE

DATA OTYPE/0/
DATA MM/9,0,0/
DATA ICHECK/0/
IF(ICHECK.NE.0.AND.ISIZE.EQ.OISIZE) GOTO 100
ICHECK=Ij :[[i O IS IZ E=IS I ZE

ISIZEF=ISIZE*4
SQRT2=SQRT (2. 0)
CALL POWER(ISIZE,MM(1))
MM(1)=MM(1)+i

C
C COSINE TRANSFORM TABLE GENERATION
C

Y=3.1415927/2.0/FLOAT(ISIZE)
CC=COS (Y)
SC=SIN (Y)
COSINE(1) =CC
SINE(1) =SC
JJ=ISIZE-2
DO 950 I=1,JJ
COSINE(I+1)=COSINE(I)*CC - SINE(I)*SC

950 SINE(I+1)=SINE(I)*CC + COSINE(I)*SC
C END COSINE TRANSFORM TABLE GENERATION
C
C BRANCH TO DO FORWARD OR INVERSE TRANSFORM
100 IF(ITYPE) 888,888,999
C
C FORWARD TRANSFORM
C
999 OUTPUT(1)=INPUT(l)

OUTPUT(2) =0.0
DO 900 I=2,ISIZE
OUTPUT (I*2-1) =INPUT(I)
OUTPUT(ISIZEF+3-I*2) =0.0
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- 7. - -- . --- -1. . -. - -I - .

* Subroutine for Cosine Transform ***

SUBROUTINE COSINE(C,MC,NC,IR,IC,LR,LC)
C
C C=INPUT / OUTPUT MATRIX
C MC=NUMBER OF ROWS OF C TO BE TRANSFORMED
C NC=NUMBER OF COLUMNS OF C TO BE TRANSFORMED
c IR=1, FORWARD ROW TRANSFORM
C IR=I, NO ROW TRANSFORM
C IR=-1, INVERSE ROW TRANSFORM
C IC=1, FORWARD COLUMN TRANSFORM
C IC=0, NO COLUMN TRASFORM
C IC=-I, INVERSE COLUMN TRANSFORM
C

COMMON /CORE/ A(1024)
REAL C(LR,LC)
IF ( EQ. 0) GO TO 140

C
C REPEAT FOR EACH COLUMN
C

DO 110 N=I,NC
c
C C(1,N) POINTS TO ROW 1 COLUMN N
C

DO 112 M=1,MC
A(M)=C(M,N)

112 CONTINUE
CALL FCT(A,MC, IC)
DO 115 M=1,MC
C(M,N) =A(M)

115 CONTINUE
110 CONTINUE
140 IF (IR .EQ. 0) RETURN

C
C FOR EACH ROW COPY TO DUMMY ARRAY 

S

C
DO 150 M=1,MC

C
C COPY ROW M INTO A
C

DO 130 N=1,NC
130 A(N)=C(M,N)

CALL FCT(ANC,IR)
DO 145 N=1,NC

0 145 C(M,N)=A(N)
150 CONTINUE

"'- RETURN
END

S. 14
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SFast Cosine Transform**

OUTPUT(ISIZEF+4-I*2) =0.0
900 OUTPUT (1*2) =0.0

OUTPUT(2*ISIZE+1) =0.
OUTPUT (2*ISIZE+2) =0.
CALL HARM (OUTPUT, MM, INV, S,1, IFERR)
IF(IFERR.NE.0) GOTO 998
INPUT (1) =OUTPUT (1) *SQRT2

* DO 810 I=2,ISIZE
810 INPUT(I)=2.0*((OUTPUT(I*2-1)*COSINE(I-1))-

*OUTPUT(I*2) *SINE(I-.1))
GOTO 1001

C
C INVERSE TRANSFORM
C
888 SUM= INPUT (1) /SQRT2

C-T=SUM*(1.0.1.0/SQRT2)/FLOAT(ISIZE)
OUTPU T(1) = IN PU T(1)
OUTPUT(2) =0.0
DO 910 I=2,ISIZE
OUTPUT(I*2-1) =INPUT(I) *COSINE(I-1)
OUTPUT(ISIZEF+3-I*2)=INPUT(I)*COSINE(I-1)
OUTPUT(ISIZEF+4.-I*2)= INPUT(I)*SINE(I-1)

910 OUTPUT(I*2)=-(INPUT(I)*SINE(I-1))
OUTPUT (2*IS IZE+1) =0.
OUTPUT(2*ISIZE+2) =0.
CALL HARM(OUTPUT,MM,INV,S,-1,IFERR)

C IBM FFT ROUTINE (3D.)
IF(IFERR.EQ.0) GOTO 960

998 IF(OTYPE.NE.0)WRITE(6,612) IFERR
612 FORMAT(- ','HARM ERROR',' * ERROR= ',12)

STOP 777
960 CONTINUE

DO 811 I=1,ISIZE
811 INPUT(I)=OUTPUT(I*2-1) -iCT

* .1001 CONTINUE
RETU RN
END
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S•*Subroutine to Determine Power *

*' SUBROUTINE POWER(JJ, IPOWER)
C** THIS SUBROUTINE INPUTS A VALUE 'JJ' AND RETURNS
C** ITS POWER OF 2 - 'IPOWER'.
C** WHERE:
C** IPOWER
C** JJ = 2C**

INTEGER OTYPE
DATA OTYPE/0/

DATA IOUT/6/
C IOUT IS THE PRINTER UNIT NUMBER.

NC=JJ
IPOWER=0

10 I=NC/2
NC=I
IPOWER= IPOWER+1
IF(I.GT.1) GOTO 10
IF(I.EQ.1) GOTO 20
IF (OTYPE. NE. 0) WRITE (IOUT, 1)

1 FORMAT(' , POWER ERROR * INPUT IS NOT A POWER OF 2')
STOP 777

20 RETURN
END
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SMain Driver Program for all AMP Simulations

INTEGER 1N2/4HIN*2/, 1N4/4HIN*4/,RL/4HREAL/
REAL*4 XIN(256,256) ,COEFF(7,256)
REAL*4 QTH(50),QL(50)
REAL A(256)

C----------------------------------------------------------
C
C
C AHPC/ASPC MAIN DRIVER PROGRAM
C
C EXPLANATIONS OF VARIABLES:
C XIN - MAIN I/O IMAGE MATRIX
C COEFF - COEFFICIENT STORAGE MATRIX
C JBLKSZ - TRANSFORMATION BLOCKSIZE
C ISZ - IMAGE ROW SIZE
C JSZ - IMAGE COLUMN SIZE
C NUMSMP - NUMBER SAMPLES/LINE (SAME AS JSZ)
C NUMFR - NUMBER SAMPLE LINES/FRAME (SAME AS ISZ)
C 0TH - QUANTIZER THRESHOLDS
C QL - QUANTIZER LEVELS
C
C SUBROUTINES:
C DSKIO - DISK INPUT / OUTPUT
C MAXQTZ - MAX QUANTIZER DESIGN
C COMPMC - ADPCM DATA COMPRESSION
C
C
C----------------------------------------------------------

NUMFR=256
NUMSMP=256
NCOEFF=3
ISZ=256
JSZ=256
JBLKSZ=16

COMMON /A/ JBLKSZ
DO 10 I=1,ISZ
CALL DSKIO(A,JSZ,I,l,l,RL)

10 XIN(I,J)=A(J)
DO 11 I=1,12I

11 WRITE(6,100l) (XIN(I,J) ,J=1,16)
1001 FORMAT(' '16(F6.0,lX))

NBIT=1
*CALL MAXQTZ (QTH,QL,NLEVEL,NBIT) tgN

CALL COMPMC(XIN, NUMFR, NUMSMP,NCOEFF,COEFF,QTH,QL,NLEVEL)
WRITE(6,20)

20 FORMAT(' MADE IT BACK THROUGH SUBS ***I

DO 30 I=1,12
30 WRITE(6,1001) (XIN(I,J) ,J=l,16)

DO 40 I=l,ISZ -
DO 35 J=l,JSZ
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SMain Driver Program for all ASC Simulations**
35 A (J) =X IN (1,J)

CALL DSKIO(A,jSz,1,0,2,RL)
40 CONTINUE

WRITE(6,2)
2 FQRMAT(10*** JOB FINISHED *)
STOP
END

I-s

.40
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SSubroutine for ADPCM using ARMA Model**

SUBROUTINE COMPMC(XIN,NF,NSF,N,CM,QTH,QL,NLEVEL)
REAL A(10),XIN(NF,NSF),R(7),XV(256),XTR(256,256)
REAL CM(7,256),QL(1),QTH(1),E2V(256),VAREST(256),XMN(256)
REAL ACV(256) ,AC(l0) ,PACV(10) ,WORK(10)
REAL P(10),WW(150),RESMN(256)
REAL B (10, 10) ,PAR (10)
REAL QML(1024),QMTH(1024)
INTEGER NARPS(256)

C
C EXPLANATION OF CALL VARIABLES:
C XIN - THE INPUT DATA MATRIX AND RESIDUAL OUTPUT MATRIX
C NF - NUMBER OF FRAMES (NUMBER OF LINES IN THE INPUT MATRIX)
C NSF - NUMBER OF SAMPLES PER FRAME (SAMPLES PER LINE)
C N - NUMBER OF PREDICTOR COEFFICIENTS TO BE USED -

C CM - MATRIX THAT CONTAINS THE PREDICTOR COEFFICIENT VECTORS
C
C
C SET UP THE CONSTANTS AND INITIAL VALUES
C

CALL MAXQTZ (QMTH, QML, MLEVEL, 6)
XNSF = NSF
COMMON /A/ JBLKSZ
XAVBLK=JBLKSZ *12 8.
I P= N

NHOLD=N
C
C IN THE DO 160 LOOP, I IS THE LINE NUMBER (1- NF)
C

VSME=0.
VSMSE=0.
RSME=0.
RSMSE=0.
NLEV=2*NLEVEL
DO 160 I=1,NF
N=NHOLD
SUM=O.
SUMSX=0.
DO 501 J=1,NSF

501 XV(J)=XIN(I,J)
DO 510 J=1,NSF
SUM= SUM+XV (J)

4 SUMSX=SUMSX+XV (J) *XV (J)
510 CONTINUE

XMN (I) =SUM/NSF
IF(MOD(I-1,JBLKSZ) .NE. 0)GO TO 373
XMN(I)=2750.
GO TO 374

373 XMN(I)=0.
374 CONTINUE
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Subroutine for ADPCM using ARMA Model**

321 CALL FTAUTQ(XV,NSF,N,N,7,XMN(I),ACV(1),ACV(2),AC,PACV,WORK)
IP=N
IQ=0

CALL FTARPS (ACV,XBAR, IP, IQ,A, PMAC,WW, IER)
IF(N .EQ. 2)GO TO 432

N= N-i
WRITE(6,636)N

636 FORMAT(' --- > N MADE TO: ,13)

GO TO 321
432 CALL PARSBL(A,N,PAR,B)

CM(KK,I)=UNIFRM(-1.75,l.75,MLEVEL,A(KK))
U335 CONTINUE

DO 700 II=1,N
700 R(II)=XMN(I)

DO 710 II=l,NSF
PRED=0.
DO 705 J=1,N

705 PRED=CM (J, I) *R(J) +PRED
PRED=PRED+PMAC
E2V(II)=XV(II) -PRED
DO 706 K=2,N

706 R(N+2-K)=R(N+1-K)
R(1)=XV(11)

710 CONTINUE
SUME=0.
SUMSQE=0.
DO 155 M=1,NSF
SLJME=SUME+E2V(M)

155 SLMSQE=SUMSQE+(E2V(M) *E2V(M))
VAREST(I)=(SUMSQE-( (SUME*SUME)/NSF) )/(NSF-1.)
VSME=VSME+VAREST (I)
VSMSE=VSMSE+VAREST MI *VkJREST MI
RESMN(I) =SUME/NSF
WRITE(6,919)I,RESMN(I),VAREST(I),(A(Kl),Kl=1,N),(CM(K2,I),K2=1,N)

919 FORMAT(' -,14,5(1X,El0.3),/,3(lX,El0.3))
VAREST(I)=UNIFRM(0.,40000.,512,VAREST(I))
IF(MOD(I-1,JBLKSZ) .EQ. 0)RESMN(I)=RESMN(I)/JBLKSZ
RSME=RSMN+RESMN (I)
RSMSE=RSMSE+RESMN (I) *RESMN(I)
RESMN(I)=QNTZ (RESMN(I) ,MLEVEL,QML,QMTH,150.)
IF(MOD(I-1,JBLKSZ) .EQ. 0)RESMN(I)=RESMN(I)*JBLKSZ

* DO 200 J=1,N
200 R(J) = XMN(I)

DO 250 J=1,NSF
S =XV (J)
RT2=0 .0

C
C NOW GET XMITTER RESIDUAL
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• *Subroutine for ADPCM using ARMA Model *

C
230 DO 230 K=1,N
230 RT2=RT2 + CM(K,I)*R(K)

E2 = S - RT2 - RESMN(I)
EQ2=QNTZ (E2,NLEVEL,QL,QTH,VAREST(I))
XTR (I, J) =EQ2Ct

o-..

C SHIFT R-REGISTER
c
C

DO 240 K=2,N
240 R(N+2-K) = R(N+1-K)

R(1) = RT2+EQ2+RESMN(I)
250 CONTINUE

NARPS(I)=N
160 CONTINUE

VMN=VSME/256.
VVAR=(VSMSE-((VSME*VSME)/256.) )/255.
RMN=RSME/256.
RVAR=(RSMSE-((RSME*RSME)/256.) )/255.
WRITE(6,920) VMN,VVAR,RMN,RVAR

920 FORMAT(' VMN=',E15.5,' VV. E15.5,' RMN=',E15.5,' RVAR=',El5.5)
C V------------------------------------
C
C RECEIVER SIMULATION SECTION
C

*~ C-------------------------------------
" ' C

C SET R - REGISTER TO MEAN VALUE
C FOR THE CURRENT LINE.
C

* C
DO 210 I = 1,NF

* N=NARPS(I)
DO 170 J = 1,N -.

170 R(J)=XMN(I)
DO 400 J = 1,NSF
RV2 = 0.0
DO 180 K = 1,N

180 RV2 = RV2 + CM(K,I)*R(K)
RN XTR(I,J) + RV2 + RESMN(I) q
XIN(I,J)=RN

*C C--------------------------------
C

* C SHIFT R - REGISTER.
C
C

DO 190 K = 2,N -
190 R(N+2-K) = R(N+1-K)
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SSubroutine for ADPCM using ARMA Model**

R(l) =RN
* -400 CONTINUE

- .:210 CONTINUE
RETURNj

- END
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* Subroutine for ADPCM using Kalman Filter *

SUBROUTINE COMPMC(XIN,NF,NSF,N,CM,QTH,QL,NLEVEL)
REAL A(I),VI(10),XIN(256,256),R(I0),XV(256),G(10),V(10,10)
REAL XTR(256,256)
REAL CM(7,256),QL(l),QTH(1),E2V(256),VAREST(256),XMEAN(256)
REAL RESMN(256)
REAL QML(1024),QMTH(1024)
REAL B(10,10),PAR(10)

C
C EXPLANATION OF CALL VARIABLES:
C XIN - THE INPUT DATA MATRIX AND RESIDUAL OUTPUT MATRIX
C NF - NUMBER OF FRAMES (NUMBER OF LINES IN THE INPUT MATRIX)
C NSF - NUMBER OF SAMPLES PER FRAME (SAMPLES PER LINE)
C N - NUMBER OF PREDICTOR COEFFICIENTS TO BE USED
C CM - MATRIX THAT CONTAINS THE PREDICTOR COEFFICIENT VECTORS
C
C DEFINITION OF VARIABLE TERMS:
C V - THE ERROR COVARIANCE MATRIX
C A - THE PREDICTOR COEFFICIENT VECTOR
C VARI - INITIAL VALUE FOR THE ERROR COVARIANCE MATRIX
C VV - VARIANCE OFFSET
C XV - THE INPUT LINE TEMPORARY VECTOR
C G - THE GAIN VECTOR
C R - THE PAST VALUE VECTOR
C E - THE ERROR OR RESIDUAL TERM
C
C SET UP THE CONSTANTS AND INITIAL VALUES
C

DATA V/100*0.0/,A/1.0,-.5,-.2,.3,.4,-.5/
CALL MAXQTZ (QMTH, QML, MLEVEL, 6)
VLO=9999999.
VHIGH-1.
XNSF = NSF

COMMON /A/ JBLKSZ
XAVBLK=JBLKSZ *12 8.
NSFMI=NSF-1
VV = 1.0

C IN THE DO 160 LOOP, I IS THE LINE NUMBER (I- NF)
C

DO 160 I=I,NF
VARI= 100.
DO 10 J=I,N
DO 10 K=1,N
V(JK) = 0.0

* .IF(J.EQ.K) V(J,K) VARI
10 CONTINUE

C :
C SET UP THE INPUT VECTOR AND THE PAST VALUE VECTOR

*e C
SUMX=0.
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K 77 477 --

•* Subroutine for ADPCM using Kalman Filter ***

DO 20 J=I,NSF
SUMX=SUMX+XIN (I, J)

20 XV(J) = XIN(I,J)
XMEAN (I) =SUMX/XNSF
WRITE(6,2000) I,XMEAN(I)

2000 FORMAT(' LINE: ',15,2X,E15.5)
IF(MOD(I-I,JBLKSZ) .NE. 0)GO TO 373
XMEAN(I)=2750.
GO TO 374

373 XMEAN(I)=0.
374 DO 30 J=1,N
30 R(J) = XMEAN(I)

C
C IDENTIFICATION LOOP (IDENTIFY THE PREDICTOR COEFFICIENTS)
C
C

DO 100 J=I,NSF
S XV(J)

S2 = 0.0
RT = 0.0
DO 40 K=I,N
V1(K) = 0.
DO 40 L=I,N

40 V1(K) = VI(K) + V(K,L)*R(L)
DO 50 K=1,N

50 S2 = S2 + R(K)*V1(K)
DO 60 K=I,N
G(K) = VI (K)/(VARI + S2)

60 RT = RT + A(K)*R(K)
DO 70 K=1,N
DO 70 L=I,K
V(K,L) = V(K,L) - G(K)*Vl(L)

70 V(L,K) = V(K,L)
E = S - RT

DO 80 K=I,N
80 A(K) = A(K) + G(K)*E

C
C SHIFT THE PAST VALUE VECTOR
C

DO 90 L=2,N
90 R(N+2-L) = R(N+I-L)

R(1) = RT+E
IF(I .EQ. 225)WRITE(6,1001) (G(K1) ,KI=I,N)

.4. 1001 FORMAT(' G=',3(IX,EI5.5))
100 CONTINUE

CALL PARSBL (A, N, PAR, B)
DO 335 KK=1,N
CM(KK,I)=UNIFRM(-1.75,1.75,256,A(KK))

335 CONTINUE
C

154
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**Subroutine for ADPCM using Kalman Filter

C RESET R-REGISTER TO INITIAL SIGNAL VALUE
C

DO 120 J=1,N
120 R(J) = XMEAN(I)

DO 150 J=1,NSF
S = XV(J)
RT2 = 0.0

C DETERMINE RESIDUAL SIGNAL
C
C RT2 IS AT THE TRANSMITTER STAGE WHERE:

* .C RT2 = RT2 + AO(K)*RV(K)
C

DO 130 K=1,N
130 RT2 = RT2 + CM(K,I)*R(K)

E2V(J) =S-RT2
C
C SHIFT R-REGISTER

-- C
DO 140 K=2,N

140 R(N+2-K) = R(N+1-K)
R(l) = RT2+E2V(J)

150 CONTINUE
SUME=0.
SUMSQE=0.
DO 155 M=1,NSF
SUME=SUME+E2V(M)

155 SUMSQE=SUMSQE+(E2V(M) *E2V(M))
VAREST (I) =(SUMSQE- (SUME*SUME/NSF) )/NSFM1
IF(VAREST(I) .LT. VLO)VLO=VAREST(I)
IF(VAREST(I) .GT. VHIGH)VHIGH=VAREST(I)
VSME=VSME+VAREST (I)
VSMSE=VSMSE+VAREST (I) *VAREST (I)
RESMN (I) =SUME/XNSF
IF(MOD(I-1,JBLKSZ) .EQ. 0)RESMN(I) =RESMN(I)/JBLKSZ
WRITE(6,919)I,RESMN(I),VAREST(I),(A(KI),K1=1,N),(CM(K2,I),K2=1,N)

919 FORMAT(' -,14,5(lX,El0.3),/,3(lX,El.0.3))
VAREST(I)=UNIFRM(0.,40000.,512,VAREST(I))
RSME=RSME+RESMN (I)
RSMSE=RSMSE+RESMN (I) *RESMN (I)
RESMN(I)=QNTZ(RESMN(I),MLEVEL,QML,QMTH,150.)
IF(MOD(I-1,JBLKSZ) .EQ. 0)RESMN(I)=RESMN(I)*JBLKSZ
DO 200 J=1,N

200 R(J) = XMEAN(I)
DO 250 J=1,NSF
S=XV (J)
RT2=0 .0

C
C NOW GET XMITTER RESIDUAL
C

* . . .- 155
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* Subroutine for ADPCM using Kalman Filter *

DO 230 K=1,N
230 RT2=RT2 + CM(K,I)*R(K)

E2 = S - RT2 - RESMN(I)
EQ2 =QNTZ(E2,NLEVEL,QL,QTH,VAREST(I))
XTR (I, J) =EQ2c

C
C SHIFT R-REGISTER

C
V C

DO 240 K=2,N
240 R(N+2-K) = R(N+I-K)

R(1) = RT2+EQ2+RESMN(I)
250 CONTINUE
160 CONTINUE

VMN=VSME/256.
0VVAR=(VSMSE-((VSME*VSME)/256.) )/255.

RVAR=(RSMSE-((RSME*RSME)/256.) )/255.::.-: WRITE (6,920) VMN,VVAR, RMN, RVAR-.920 FORMAT(' VMN=',EI2.5,' VVAR=',El2.5,1 RMN•,,E12.5,1 RVAR=-,E12.5)

WRITE(6,921) VLO,VHIGH
921 FORMAT(' VLO=',E15.5,' VHIGH=',E".5)

C,
C RECEIVER SIMULATION SECTION
C

C
C SET R - REGISTER TO MEAN VALUE
C FOR THE CURRENT LINE.
C
C

DO 210 I = 1,NF
DO 170 J = 1,N

170 R(J) =XMEAN (I)
DO 400 J = 1,NSF
S = XIN(I,J)
RV2 = 0.0
DO 180 K = 1,N

180 RV2 = RV2 + CM(K,I)*R(K)
RN = XTR(I,J) + RV2 + RESMN(I)XIN(I,J) = RN

C
C
C SHIFT R - REGISTER.c :
C

DO 190 K = 2,N
190 R(N+2-K) = R(N+1-K)

...-... S.15
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* Subroutine for ADPCM using Kalman Filter ***

R(1) = RN
400 CONTINUE
210 CONTINUE

RETURN
END

-- AA
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*** Subroutine for ADPCM using Stoch. Approx. **2

SUBROUTINE COMPMC(XIN,NF,NSF,N,CM,QTH,QL,NLEVEL)
REAL A(10),XIN(NF,NSF),R(7),XV(256),XTR(256,256)
REAL CM(7,NF),QL(1),QTH(i),E2V(256),VAREST(256),XMN(256)
REAL RESMN (256)

REAL B(10,10),PAR(10)
REAL QML(1024) ,QMTH(1024)

C
C EXPLANATION OF CALL VARIABLES:
C XIN - THE INPUT DATA MATRIX AND RESIDUAL OUTPUT MATRIX
C NF - NUMBER OF FRAMES (NUMBER OF LINES IN THE INPUT MATRIX)
C NSF - NUMBER OF SAMPLES PER FRAME (SAMPLES PER LINE)
C N - NUMBER OF PREDICTOR COEFFICIENTS TO BE USED
C CM - MATRIX THAT CONTAINS THE PREDICTOR COEFFICIENT VECTORS
C
C
C
C IN THE DO 160 LOOP, I IS THE LINE NUMBER (1 - NF)
C

CALL MAXQTZ (QMTH,QML,MLEVEL,6)
COMMON /A/ JBLKSZ
XAVBLK=JBLKSZ *256.
DO 160 I=1,NF
DO 501 J=1,NSF

501 XV(J) =XIN (I, J)
CALL STAPRX(XV,NSF,N,A,XMN(I))
IF(MOD(I-1,JBLKSZ) .NE. 0)GO TO 373
XMN(I)=2750.
GO TO 374

373 XMN(I)=0.
374 CALL PARSBL(A,N,PAR,B)

DO 335 KK=I,N
CM(KK,I)=UNIFRM(-1.75,1.75,256,A(KK))

335 CONTINUE
DO 700 II=I,N

700 R(II) =XMN(I)
DO 710 II=I,NSF
PRED=0.
DO 705 J=1,N

705 PRED=CM(J,I)*R(J)+PRED
E2V(II) =XV(II) -PRED
DO 706 K=2,N

706 R(N+2-K)=R(N+1-K)
R(1)=XV(II)

710 CONTINUE
SUME=0.
SUMSQE=0.
DO 155 M=1,NSF

155 SUME=SUME+E2V(M)|155 SUMSQE=SUMSQE+(E2V(M)*E2V(M))

VAREST(I)=(SUMSQE-((SUME*SUME)/NSF))/(NSF-1.)

158
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* Subroutine for ADPCM using Stoch. Approx. *

RESMN ( I) =SUME/NSF
IF(MOD(I-1,JBLKSZ) .EQ. 0)RESMN(I)=RESMN(I)/JBLKSZ
WRITE(6,919)I,RESMN(I),VAREST(I),(A(KI),KI=,N),(CM(K2,I),K2=1,N)

919 FORMAT(' ',14,5(lX,E10.3),/,3(1X,E10.3))
VAREST(I)=UNIFRM(0. ,100000.,512,VAREST(I))
RESMN(I)=QNTZ(RESMN(I),MLEVEL,QML,QMTH,150.)
IF(MOD(I-1,JBLKSZ) .EQ. 0)RESMN(I)=RESMN(I)*JBLKSZ
DO 200 J=1,N

200 R(J) = XMN(I)
DO 250 J=1,NSF
S=XV(J)
RT2=0.0

C
C NOW GET XMITTER RESIDUAL
C

DO 230 K=1,N
230 RT2=RT2 + CM(K,I)*R(K)

E2 = S- RT2 - RESMN(I)
EQ2=QNTZ(E2,NLEVEL,QL,QTH,VAREST(I))
XTR (I, J) =EQ2

C
C
C SHIFT R-REGISTER
C
c

DO 240 K=2,N
240 R(N+2-K) = R(N+1-K)

R(1) = RT2+EQ2+RESMN(I)
250 CONTINUE
160 CONTINUE

C-------------------------------------
C
C RECEIVER SIMULATION SECTION
C
C--------------------------------------
C

C SET R - REGISTER TO MEAN VALUE
C FOR THE CURRENT LINE.
C
C

DO 210 I = 1,NF
DO 170 J = I,N

170 R(J)=XMN(I)
DO 400 J = 1,NSF
RV2 = 0.0
DO 180 K = 1,N

180 RV2 = RV2 + CM(K,I)*R(K)
RN = XTR(I,J) + RV2 + RESMN(I)

*a XIN(I,J)=RN
C -------------------------------

159
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**Subroutine for ADPCM using Stoch. Approx.

CSHIFT R - REGISTER.

DO 190 K = 2,N
190 R(N+2-K) = R(N+1-K)

R(1) = RN
*2~.400 CONTINUE

210 CONTINUE
2 RETURN

END

160



* Subroutine to Provide PARCOR Stabilization *

SUBROUTINE PARSBL(A,N,PAR,B)

C
C COEFFICIENT PARCOR STABILIZATION
C SUBROUTINEmC
C

REAL A(l),B(10,10),R(13),PAR(l)
10 DO 100 I=I,N

100 B(I,N) =-A(I)
IF(ABS(A(N)) .GT. 0.97)GO TO 500
PAR(N) =-A(N)
NMI=N-I
DO 300 I=1,NM1
K=N+1-I
KM=K-1
G=I.0/(I.0-B(K, K)*B (K,K) )
DO 200 KK=1,KM

200 B(KK,KM)=(B(KK,K)-B(K,K)*B(K-KK,K))*G
IF(ABS(B(KM,KM)) .GT. 0.97)GO TO 500
PAR(KM)=B(KM,KM)

300 CONTINUE
RETURN

500 GG=1.0
DO 510 I=1,N
GG=0.97*GG

510 A(I) =GG*A (I)
GO TO 10
END

16
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Subroutine for ADPCM Kalman filter zeroing

SUBROUTINE COMPMC(XIN,NF,NSF,N,CM,QTH,QL,NLEVEL)aREAL A(l0),Vl(l0),XIN(256,256),R(l0),XV(256),G(l0),V(10,10)
REAL XTR(256,256)
REAL CM(7,256),QL(l),QTH(l),E2V(256),VAREST(256),XMEAN(256)
REAL RESMN(256)
REAL Q4L (10 24) , QMTH (10 24)
REAL B(10,10),PAR(10)

C EXPLANATION OF CALL VARIABLES:
C XIN - THE INPUT DATA MATRIX AND RESIDUAL OUTPUT MATRIX
C NF - NUMBER OF FRAMES (NUMBER OF LINES IN THE INPUT MATRIX)
C NSF - NUMBER OF SAMPLES PER FRAME (SAMPLES PER LINE)
C N - NUMBER OF PREDICTOR COEFFICIENTS TO BE USED
C CM - MATRIX THAT CONTAINS THE PREDICTOR COEFFICIENT VECTORS
C
C DEFINITION OF VARIABLE TERMS:
C V - THE ERROR COVARIANCE MATRIX
C A - THE PREDICTOR COEFFICIENT VECTOR
C VARI - INITIAL VALUE FOR THE ERROR COVARIANCE MATRIX
C - VARIANCE OFFSET
C XV - THE INPUT LINE TEMPORARY VECTOR
C G - THE GAIN VECTOR
C R - THE PAST VALUE VECTOR
C E - THE ERROR OR RESIDUAL TERM
C
c
C

C
C SET UP THE CONSTANTS AND INITIAL VALUES

-1C
DATA V/100*0.0/,A/1.0,-,.5,-.2,.3, .4,-.5/
LIMCNT=2
IBEAT=1
CALL MAXQTZ (QMTH, QML, MLEVEL, 6)
VLO=9999999.
VHIGH=-1.
XNSF = NSF
COMMON /A/ JBLKSZ
XAVBLK=JBLKSZ*128.
NSFMl=NSF-l
-VV- =1.0
VARI = 100.0

C
C IN THE Do 160 LOOP, I IS THE LINE NUMBER (1 VCNF)
C

DO 160 I=1,NF
DO 10 J=l,N
DO 10 K=1,N
V(J,K) = 0.0 *

SIF(J.EQ.K) V(JK) VARI

162
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* Subroutine for ADPCM / Kalman filter / Zeroing ***

10 CONTINUE
C.°

C SET UP THE INPUT VECTOR AND THE PAST VALUE VECTOR
C

SUMX=0.
DO 20 J=I,NSF
SUMX=SUMX+XIN (I,J)

20 XV(J) = XIN(I,J)
IF(MOD(I-1,JBLKSZ) .NE. 0)GO TO 373
XMEAN (I) =2750.

GO TO 374
373 XMEAN(I)=0.
374 DO 30 J=1,N

30 R(J) = XMEAN(I)
C
C IDENTIFICATION LOOP (IDENTIFY THE PREDICTOR COEFFICIENTS)
C
C

DO 100 J=I,NSF
S = XV(J)
S2 = 0.0
RT = 0.0
DO 40 K=1,N
Vl(K) = 0.
DO 40 L=1,N

40 V1(K) = V1(K) + V(K,L)*R(L)
DO 50 K=l,N

50 S2 = S2 + R(K)*Vl(K)
DO 60 K=1,N
G(K) = VI(K)/(VARI + S2)

60 RT = RT + A(K)*R(K)
DO 70 K=I,N
DO 70 L=1,K
V(K,L) = V(K,L) - G(K)*VI(L)

70 V(L,K) = V(K,L)
E = S - RT
DO 80 K=1,N

80 A(K) = A(K) + G(K)*E
C
C SHIFT THE PAST VALUE VECTOR
C

DO 90 L=2,N
90 R(N+2-L) = R(N+l-L)

R(1) = RT+E
100 CONTTNUE

CALL PARSBL(A,N,PAR,B)
DO 335 KK=1,N
CM(KK,I)=UNIFRM(-l.75,1.75,256,A(KK))

335 CONTINUE

1C
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**Subroutine for ADPCM /Kalman filter /Zeroing

C RESET R-REGISTER TO INITIAL SIGNAL VALUE
C

DO 120 J=l,N
120 R(J) = XMEAN(I)

DO 150 J=1,NSF
S = XV(J)KRT2 = 0.0

C
*C DETERMINE RESIDUAL SIGNAL

C
C RT2 IS AT THE TRANSMITTER STAGE WHERE:
C RT2 = RT2 + AO(K)*RV(K)
C

-: DO 130 K=l,N
130 RT2 = RT2 + CM(K,I)*R(K)

E2V(J) =S-RT2
C
C SHIFT R-REGISTER
C

DO 140 K=2,N
140 R(N+2-K) = R(N+1-K)

R(1) = RT2+E2V(J)
150 CONTINUE

SUME=O.
SUMSQE=0.
DO 155 M=1,NS'

15SUME=SUME+E2V(M)
155 SI (SUMSQEE (SME*SUME/) )/SM
IVAREST(I)(.LT. VLO)VLO=VAEST()/S
IF(VAREST(I) LGT. VHIG)VHI=VAREST()

* * VESE+VARGT. (I HVIHVAE
VSME=VSME+VAREST(I)*RETI
VMEVSI)=SUMES()VRET
IF(MOD(I)-1,JBLKSZ) E.0RSNI =EM()JLS
WIT(M ,919I,BSMN),EQVAREST(I)(A(1),1=1N),CM(2,IK2lN

91 FRMT(6 ,14,5(1XE1),/,3ES(1X,E1O.3))K~,)(MK,)K=,
919 RERMT(')=U,14R5(lX ,El0.),,VAXE0.3))
VASE=ERES=NFM( I) 00.52,AES()
RSME=RSME+RESMN (I) *E (I
RMEMERESMN(I)=QTZ RESMN(I)ELQMT15.
I(D(-JLSZ .E.)RESMN(I)=QNZRESMN(I)*JBLKSZLMT,10.
DF(OD(-IBK 200 J=1,NI)RSM(I*BLS

200 20J 0 = MEN(
DO0 250) =1,MENS
DO=250J lNS
RT=0.0J

C T=.
* ~~C NWGTXITRRSDA

C
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Subroutine for ADPCM / Kalman filter / Zeroing *

DO 230 K=1,N
230 RT2=RT2 + CM(K,I)*R(K)

E2 = S - RT2 - RESMN(I)
EQ2=QNTZ(E2,NLEVEL,QL,QTH,VAREST(I))
IF(IBEAT .NE. I)EQ2=0. "o.
IF(IBEAT .EQ. LIMCNT)IBEAT=r
IB EAT= IB EAT+-
XTR(I, J) =EQ2

C °

C
C SHIFT R-REGISTER
C
C

DO 240 K=2,N
240 R(N+2-K) = R(N+1-K)

R(1) = RT2+EQ2+RESMN(I)
250 CONTINUE
160 CONTINUE

VMN=VSME/256.
VVAR= (VSMSE- ((VSME*VSME)/256.) )/255.
RMN=RSME/256.
RVAR= (RSMSE- ((RSME*RSME)/256. ) )/255.
WRITE (6,920) VMN, VVAR, RMN, RVAR

920 FORMAT(' VMN=',E12.5,' VVAR=",E12.5,' RMN=IE12.5,' RVAR=,E2.5)
WRITE(6,921)VLO,VHIGH

C"921 FORMAT(' VLO=',E15.5,' VHIGH=',E15.5)

C
C RECEIVER SIMULATION SECTION
C

-C -E - R - RE SE TO MEA -VALUE----- -----C
C SET R - REGISTER TO MEAN VALUE
C FOR THE CURRENT LINE.
C
C

DO 210 I = 1,NF
DO 170 J = 1,N

170 R (J) =XMEAN (I)
DO 400 J = 1,NSF
S = XIN(I,J)

4 RV2 = 0.0
DO 180 K = 1,N

180 RV2 = RV2 + CM(K,I)*R(K)
RN = XTR(I,J) + RV2 + RESMN(I)
XIN(I,J) = RN

C -------------------------------
* C

C SHIFT R - REGISTER.
C

165
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**Subroutine for ADPCM /Kalman filter /zeroing

U ~~C19 N+K)=RN-)
DO 190 K = 2,N

400 CONTINUE
210 CONTINUE

RETURN
END

4,M.
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* Subroutine for ADPCM / Kalman filter / Back-Quantization *

SUBROUTINE COMPMC(XIN,NF,NSF,N,CM,QTH,QL,NLEVEL)
REAL A(I),V1(10),XIN(256,256),R(10),XV(256),G(10),V(10,10)
REAL XTR(256,256)
REAL CM(7,256),QL(l),QTH(l),E2V(256),XMEAN(256)
REAL RESMN(256)
REAL QML(1024),QMTH(1024)
REAL B(10,10),PAR(I)

C
C EXPLANATION OF CALL VARIABLES:
C XIN - THE INPUT DATA MATRIX AND RESIDUAL OUTPUT MATRIX
C NF - NUMBER OF FRAMES (NUMBER OF LINES IN THE INPUT MATRIX)
C NSF - NUMBER OF SAMPLES PER FRAME (SAMPLES PER LINE)
C N - NUMBER OF PREDICTOR COEFFICIENTS TO BE USED
C CM - MATRIX THAT CONTAINS THE PREDICTOR COEFFICIENT VECTORS
C
C DEFINITION OF VARIABLE TERMS:
C V - THE ERROR COVARIANCE MATRIX
C A - THE PREDICTOR COEFFICIENT VECTOR
C VARI - INITIAL VALUE FOR THE ERROR COVARIANCE MATRIX
C VV - VARIANCE OFFSET
C XV - THE INPUT LINE TEMPORARY VECTOR
C G - THE GAIN VECTOR
C R - THE PAST VALUE VECTOR
C E - THE ERROR OR RESIDUAL TERM
C
c
c
C
C SET UP THE CONSTANTS AND INITIAL VALUES
C

DATA V/100*0.0/,A/1.0,-.5,-.2,.3,.4,-.5/
CALL MAXQTZ (QMTH,QML,MLEVEL,6)
VLO=9999999.
VHIGH=-1.
XNSF = NSF
COMMON /A/ JBLKSZ
XAVBLK=JBLKSZ *128.
NSFM1=NSF-I
VV = 1.0

C
C IN THE DO 160 LOOP, I IS THE LINE NUMBER (1 - NF)
C

DO 160 I=1,NF
VARI=100.
DO 10 J=1,N
DO 10 K=1,N
V(J,K) = 0.0
IF(J.EQ.K) V(J,K) = VARI

10 CONTINUE
C

167



- - .- •-° - V -- .- •

9~ 97

• *Subroutine for ADPCM / Kalman filter / Back-Quantization ***

C SET UP THE INPUT VECTOR AND THE PAST VALUE VECTOR
C

SUMX=0.
DO 20 J=I,NSF
SUMX=SUMX+XIN (I, J)

20 XV(J) = XIN(I,J)
XMEAN (I) =SUMX/XNSF
WRITE(6,2000) I,XMEAN(I)

2000 FORMAT(' LINE: ',I5,2X,E15.5)
IF(MOD(I-1,JBLKSZ) .NE. 0)GO TO 373
XMEAN (I) =2750.
GO TO 374

373 XMEAN(I)=0.
374 DO 30 J=1,N
30 R(J) = XMEAN(I)

C
C IDENTIFICATION LOOP (IDENTIFY THE PREDICTOR COEFFICIENTS)
C
C

DO 100 J=1,NSF
S = XV(J)
S2 = 0.0
RT = 0.0
DO 40 K=I,N
V1(K) = 0.
DO 40 L=1,N

40 V1(K) = VI(K) + V(KL)*R(L)
DO 50 K=1,N

50 S2 = 52 + R(K)*VI(K)
DO 60 K=1,N
G(K) = VI(K)/(VARI + S2)

60 RT = RT + A(K)*R(K)
DO 70 K=1,N
DO 70 L=1,K
V(K,L) = V(K,L) - G(K)*VI(L)

70 V(L,K) = V(K,L)
E = S- RT
DO 80 K=1,N

80 A(K) = A(K) + G(K)*E
C
C SHIFT THE PAST VALUE VECTOR
C

DO 90 L=2,N
90 R(N+2-L) = R(N+1-L)

R(1) = RT+E
100 CONTINUE

CALL PARSBL(A,N,PAR,B)
DO 335 KK=I,N
CM(KKI)=UNIFRM(-1.75,1.75,256,A(KK))

335 CONTINUE
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SSubroutine for ADPCM /Kalman filter /Back-Quantization

C
C RESET R-REGISTER TO INITIAL SIGNAL VALUE
C

- - DO 120 J=1,N
120 R(J) = XMEAN(I)

DO 150 J=1,NSF
S = XV(J)
RT2 = 0.0

C
C DETERMINE RESIDUAL SIGNAL
C
C RT2 IS AT THE TRANSMITTER STAGE WHERE:
C RT2 =RT2 + AO(K)*RV(K)
C

* DO 130 K=1,N
130 RT2 = RT2 + CM(K,I)*R(K)

E2V(J)=S-RT2

C SHIFT R-REGISTER
C

DO 140 K=2,N
140 R(N+2-K) = R(N+1-K)

R(l) = RT2+E2V(J)
150 CONTINUE

SUME=0.
SUMSQE=0.
DO 155 M=1,NSF

* SUME=SUME+E2V(M)
155 SUMSQE=SUMSQE+(E2V(M)*E2V(M))

RESMN (I) =SUME/XNSF
IF(MOD(I-1,JBLKSZ) .EQ. 0)RESMN(I)=RESMN(I)/JBLKSZ

* WRITE(6,919)I,RESMN(I),(A(Kl),Kl11,N),(CM(K2,I),K2=1,N)
919 FORMAT(' 1,14,4(lX,El0.3),/,3(1X,El0.3))

RSME=RSME+RESMN (I)
* RSMSE-RSMSE+RESMN(I) *RESMN(I)

RESMN(I)=QNTZ(RESMN(I),MLEVEL,QMLQMTH,150.)
IF(MOD(I-1,JBLKSZ) .EQ. 0)RESMN(I)=RESMN(I)*JBLKSZ

* DO 200 J=1,N
200 R(J) = XMEAN(I)

* DELTA=100.
ALPHA1=.7
ALPHA2=1.
RESMSQO.
DO 250 J=1,NSF
S=XV(J)
RT2=0 .0

C
* -* C NOW GET XMITTER RESIDUAL
SI C

DO 230 K=1,N
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SSubroutine for ADPCM /Kalman filter /Back-Quantization**

230 RT2=RT2 + CM(K,I)*R(K)
E2 = S - RT2 - RESMN(I)
EQ2=QNTZ (E2 ,NLEVEL, QL, 0TH, DELTA)
XTR (I, J) =EQ2
E2V(J) =EQ2
DELTA=0.
DO 701 JI=l,J

701 DELTA=DELTA+(ALPHAl**(JI-l) )*ABS(E2V(J.JI+l))
DELTA=( (l-ALPHAl)/ALPHA2) *DELTA

* DELTA=DELTA*DELTA
IF(DELTA .LT. VLO)VLO=DELTA
IF(DELTA .GT. VHIGH) VHIGH=DELTA

C
C

* . C SHIFT R-REGISTER
C
C

DO 240 K=2,N
240 R(N+2-K) = R(N+1-K)

R(1) = RT2+EQ2+RESMN(I)
250 CONTINUE
160 CONTINUE

VMN=VSME/2 56.
VVAR= (VSMSE- ((VSME*VSME) /256.) )/255.
RMN=RSME/256.
RVAR= (RSMSE- ((RSME*RSME) /256.) )/255.
WRITE (6,920) VMN, VVAR, RMN, RVAR

920 FORMAT(' VMN=',E12.5,' VVAR=',E12.5,' RM=,l., RVAR=',E12.5)
WRITE(6,921) VLO,VHIGH

921 FORMAT(' VLO=',E15.5,1 VHIGH=',E1S.5)
C-------------------------------------

CRECEIVER SIMULATION SECTION

C
C--------------------------------------

_ C

C SET R - REGISTER TO MEAN VALUE
C FOR THE CURRENT LINE.
C
C

DO 210 I = 1,NF
DO 170 J = 1,N

170 R(J)=XMEAN(I)
DO 400 J = l,NSF
S = XIN(I,J)
RV2 = 0.0
DO 180 K = 1,N

180 RV2 =RV2 + CM (K, I) *R(K)
RN =XTR(I,J) + RV2 + RESMN(I)
XIN(I,J) =RN

170



Subroutine for ADPCM /Kalman filter /Back-Quantization

C--------------------------------
C
C S":IFT R - REGISTER.

'4- C
C

DO 190 K = 2,N
190 R(N+2-K) = R(NI1-K)

R(1) = RN
400 CONTINUE
210 CONTINUE

RETURN <

END

04
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* Main Driver Program for VASPC *

INTEGER IN2/4HIN*2/, IN4/4HIN*4/, RL/4HREAL/
REAL*4 XIN(256,256),COEFF(7,256)
REAL A(256)

C------------------------------------------------------
C
C
C "7AHPC MAIN DRIVER PROGRAM
C
C EXPLANATIONS OF VARIABLES:

C XIN - MAIN I/O IMAGE MATRIX
C COEFF - COEFFICIENT STORAGE MATRIX
C JBLKSZ - TRANSFORMATION BLOCKSIZE
C ISZ - IMAGE ROW SIZE
C JSZ - IMAGE COLUMN SIZE
C NUMSMP - NUMBER SAMPLES/LINE (SAME AS JSZ)
C NUMFR - NUMBER SAMPLE LINES/FRAME (SAME AS ISZ)
C LVECTR - NUMBER OF VECTORS IN CODE BOOK
C KDIM - VECTOR DIMENSION
C NCOEFF - NUMBER OF PREDICTOR COEFFICIENTS
C
C SUBROUTINES:
C DSKIO - DISK INPUT / OUTPUT
C COMPV - ADPCM DATA COMPRESSION
C USING PARALLEL PROCESSING
C AND VECTOR QUANTIZATION ?
C
C
C -----------------------------------------------------

NUMFR=256
NUMSMP=256
NCOEFF=3
LVECTR= 16
LVECSQ=LVECTR*LVECTR
LVECS1=LVECSQ-1
KDIM=8
ISZ=256
JSZ=256
JBLKSZ=16
COMMON /A/ JBLKSZ
DO 10 I=I,ISZ
CALL DSKIO(A,JSZ,I,I,I,RL)
DO 10 J=1,JSZ

"4 10 XIN (I, J) =A(J)
DO 11 I=1,12

11 WRITE(6,1001) (XIN(I,J) ,J=1,16)
1001 FORMAT(' ',16(F6.0,1X))

CALL COMPV(XIN,NUMFR,NUMSMP,NCOEFF,COEFF,T VECTR,KDIM)
WRITE(6,20)20 FORMAT(' ****** MADE IT BACK THROUGH SUBS ******I)
DO 40 I=1,ISZ
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* Main Driver Program for VASPC *

DO 35 J=1,JSZ
35 A(J)=XIN(I, J)

CALL DSKIO(A,JSZ,I,0,2,RL)
40 CONTINUE

WRITE(6,2)
2 FORMAT('0*** JOB FINISHED ***')

STOP
END

.
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*** Max-Lloyd Optimal Quantizer Design Subroutine ***

SUBROUTINE MAXQTZ (QTH,QL,N,NBIT)

C OPTIMAL QUANTIZER SUBROUTINEC
C THIS PROGRAM CALCULATES THE OPTIMUM QUANTIZATION

C LEVELS FOR A SPECIFIC NUMBER OF LEVELS AS OUT-
C LINED BY JOEL MAX.
C
C THE PROBABILITY DENSITY FUNCTION IS ASSUMED SYM-
C METRIC AND IS DEFINED AS A FUNCTION, HERE AS
C FUNC.NORMAL, AND IS ACCESSED THROUGH "FUNC".

Cp C-----------------------------------------------------
REAL*8 X(1024),Y(1024),AREA,XLAST,THELST,XB(1024),YB(1024)
REAL*4 QTH(l),QL(l),ERROR
REAL*8 EXTRA,ADD
N=2**NBIT
WRITE(6,3) N

3 FORMAT('0NUM LEVELS:',15,/)
C------------------------------------------------------
C
C THIS SECTION ZEROES OUT ALL ARRAYS AND SETS UP
C ALL INITIAL CRITERION ESTIMATES.
C

C. DO 5 K=1,1024
X(K)=0.

XB(K)=0.
YB(K)=0.

5 Y(K)=0.
XLAST=999.
ADD=.l
IF(N .GT. 7)ADD=.01
IF(N .GT. 20)ADD=.0005
IF(N .GT. 128)ADD=5.D-8
GUESS=0.0001
TYPE=0.

C------------------------------------------------------
C
C THIS SECTION FIGURES OUT IF N IS ODD OR EVEN.

'" C
4 C TYPE=l. -- > ODD

C TYPE=0. -- > EVEN
C
C

CHECK=N/2.
ISTOP=N/2

.*I IF((CHECK-FLOAT(INT(CHECK))) .NE. 0.)TYPE=I.
IF(TYPE .NE. 1.)GO TO 10

174
I m

N-. :- • i

. . .'



SMax-Lloyd Optimal Quantizer Design Subroutine**

C THIS SECTION SETS UP INITIAL ESTIMATES OF OPTIMUM
S.C SIGNAL LEVELS (X), AND QUANTIZATION LEVELS (Y).

C
* C

Y(l)=0.
X (1) =GUESS
THELST=X (1)
Y(2)=2*X(l) -Y(l)
GO TO 20

10 X(l)=0.
Y(1)=GUESS
THELST=Y(l)

C------------------------------------------------------
* C

C WE NOW CALCULATE ALL SUCCEEDING SIGNAL AND
C QUANTIZATION LEVELS AS OUTLINED BY MAX.
C

* C
20 DO 50 J=l,ISTOP

I=J+1
JJ=J
IF(TYPE .EQ. 1.)JJ=J+l

18 CALL CENTRD(X(3) ,X(I) ,Y(ij) ,AREA,0.)
50 Y (JJe~l) =2*X CI)-Y (JJ)

*~ C-----------------------------------------------------
* C

C WE NOW SEE IF THE LAST Y-LEVEL (QUANTIZATION) IS
*C THE CENTROID BETWEEN THE PREVIOUS X-LEVEL

C (SIGNAL) AND INFINITY.
C
C

JTRAN=JJ +1
IEND=ISTOP
IF(TYPE .EQ. l)IEND=ISTOP+l
IF(N .LE. 128)CALL CENTRD(X(ISTOP),15.,Y(IEND),AREA,1.)
IF(N .GT. 128)CALL CENTRD(X(ISTOP),100.,Y(IEND),AREA,1.)

IF(N .GT. 128)GO TO 55

IF((ADD .LE. l.D-6) .OR. (DABS(AREA) .LE. l.D-6))GO TO 80I
55 IF((ADD .LE. 1.D-1).R (DABS(AREA) .LE. 1.D6)GTOB

C-------------------------------------------------------
C
C IS THE /AREA/ WITH THESE VALUES LESS THAN THE

*C LAST ITERATION?
* CI

C IF SO, CHECK TO SEE HOW CLOSE AREA IS TO
C ZERO, AND IF NECESSARY, MODIFY INITIAL -

*C ESTIMATES AND ITERATE AGAIN.
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SMax-Lloyd Optimal Quantizer Design Subroutine**

C
C IF NOT, RESET TO LAST ITERATION, AND REDUCE
C THE MODIFICATION VARIABLE (ADD).
C
C

56 IF(DABS(AREA) .LE. DABS(XLAST))GO TO 60
IF(TYPE .NE. 1.)GO TO 57
X(l)=THELST
IF(XLAST .EQ. 999.)GO To 58
ADD=ADD/2.

SGO TO 58
57 Y(1)=THELST

IF(XLAST .EQ. 999.)GO To 58
ADD=ADD/2.

58 DO 59 J=1,JTRAN
X(J)=XB(J)

59 Y(J)=YB(J)
60 XLAST=AREA

IF(TYPE .NE. l.)GO TO 65
v THELST=X (1)

GO TO 67
65 THELST=Y(l)
67 IF(AREA .LT. 0.)GO TO 68

EXTRA=ADD
GO TO 69

68 EXTRA=-ADD
69 DO 70 J=1,JTRAN

XB(J)=X(J)
70 YB(J)=Y(J)

* IF(TYPE .NE. l.)GO TO 75
X (1)=X (1) +EXTRA
Y(2)=2*X(l)
GO TO 20

75 Y (1)=Y (1) +'-TRA
GO TO 20

C------------------------------------------------------
C
C WE NOW WRITE OUT THE CALCULATED OUTPUT LEVELS
C -- SIGNAL LEVELS AND CORRESPONDING QUANTIZER
C LEVELS.
C
C

*80 NQL=N
NQT= N-l
IF (TYPE .NE. 1.)GO TO 300
NX= INT (NI2. )
NY= INT(NI/2. ) +1
FLG=0.

* IPT=NX
DO 205 I=1,NQT
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• *Max-Lloyd Optimal Quantizer Design Subroutine ***

XXX=-X (IPT)
IF (FLG .EQ. 1.)GO TO 201
QTH (I) =-X (IPT)
IF (FLG .EQ. 0.)GO TO 202
I=I+l

201 QTH(I)=X(IPT)
I PT= I PT+l
GO TO 205

202 IF (IPT .EQ. I)FLG=I.
IF (IPT .NE. 1)IPT=IPT-l

205 CONTINUE
FLG=0.
IPT=NY
DO 210 I=1,NQL
IF (IPT .EQ. 1)FLG=I.
IF (FLG .EQ. 1.)GO TO 206
QL(I) =-Y (IPT)
YYY=-Y (IPT)
IPT=IPT-1
GO TO 210

206 QL(I) =Y(IPT)
IPT=IPT+I

210 CONTINUE
GO TO 999

300 NX=INT(N/2.)
NY=INT(N/2.)
FLG=0.
IPT=NX
DO 305 I=I,NQT
IF (IPT .EQ. I)FLG=1.
IF (FLG .EQ. 1.)GO TO 301
QTH (I) =-X (IPT)
IPT=IPT-1
GO TO 305

301 QTH(I)=X(IPT)
IPT=IPT+1

305 CONTINUE
FLG=0.
IPT=NY
DO 310 I=1,NQL
IF (FLG .EQ. 1.)GO TO 306
QL(I)=-Y(IPT)
IF (FLG .EQ. 0.)GO TO 307
I=I+l

306 QL(I)=Y(IPT)
IPT=IPT+I
GO TO 310

307 IF (IPT .EQ. 1)FLG=I.
IF (IPT .NE. 1)IPT=IPT-1

310 CONTINUE
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Max-Lloyd Optimal Quantizer Design Subroutine

999 CONTINUE
RETURN 

-END

led-
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*** Functions for Probability Calculations ***

FUNCTION FUNC(X,Q)
C----------------------------------------

C
C NORMAL GAUSSIAN DENSITY FUNCTION
C
C

REAL*8 FUNC,X,Q,P,ARG
ARG=-X*X/2.
IF(ARG .LT. -150.)GO TO 1
P= .3989422 804*DEXP (ARG)
GO TO 2

1 P=O.
2 FUNC=(X-Q)*P
RETURN
END

FUNCTION SQERR(X,Q)
C---------------------------------------
C
C MEAN SQUARED ERROR FUNCTION FOR

- C THE NORMAL GAUSSIAN DENSITY.
C
C

REAL*4 SQERR,X,Q,P
P=.3989422804*EXP (-X*X/2.)
SQERR= (X-Q) * (X-Q) *P
RETURN
END
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*** Function for Adaptive Quantization *

FUNCTION QNTZ (X,L,QL,QTH,VAR)
C-----------------------------------------------
C
C ADAPTIVE QUANTIZER FUNCTION WHICH
C QUANTIZES INPUT SAMPLES GIVEN THE
C DESIRED LEVELS AND THRESHOLDS ALONG
C WITH THE VARIANCE ESTIMATE.
C
C

REAL QL(1),QTH(1)
LM1=L-1
STD=SQRT (VAR)
DO 10 K=1,LMI
THRESH=QTH (K) *STD
IF(X .GE. THRESH)GO TO 10
QNTZ=QL(K) *STD
RETURN

10 CONTINUE
QNTZ=QL (L) *STD
RETURN
END

'1.8
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**Function for uniform Quantization

FUNCTION UNIFRM(SMALL,BIG,N,X)
IF(X .LE. SMALL)GO To 20
IF(X .GE. BIG)GO TO 40
NM1=N-.1
ADD=(BIG-SMALL)/NM1
THRADD=ADD/2.
THRSH2=SMALL
DO 10 I=1,NM1
TB RSH1 =TH RSH2
DECIDE=THRSH1 +THRADD
THRSH2=TH RSH1 +ADD
IF((X.GT.THRSHI) -AND. (X.LE.DECIDE))GO TO 11
IF((X.GT.DECIDE) .AND. (X.LE.THRSH2))GO TO 12

10 CONTINUE
WRITE(6,1)

1 FORMAT(' *.** *.* > UNIFORM LOGIC ERROR «...~

11 UNIFRM=THRSHI
GO TO 99

12 UNIFRM=THRSH2
GO TO 99

20 UNIFRM=SMALL
GO TO 99

40 UNIFRM=BIG
99 RETURN

END
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Subroutine for Centroid Calculations ***

SUBROUTINE CENTRD(XI,XIPI,Y,AREA,FLAG)

C
C CENTRD IS A SUBROUTINE DESIGNED TO:
C

C 1) CALCULATE THE CENTROID PIVOT ELEMENT
C BETWEEN TWO ENDPOINTS OF A KNOWN
C PROBABILITY DENSITY FUNCTION.
C
C 2) CALCULATE THE AREA WITH Y AS A SPECIFIC
C CENTROID PIVOT ELEMENT.
C
C
C XI, XIPI ARE THE INTEGRAL ENDPOINTS.
C Y IS THE PIVOTAL ELEMENT.
C
C -XIP1
CI
C AREA=I (X-Y)*P(X) DX
C I
C - XI
C
C FUNCTION 1) IS SELECTED IF FLAG<>l.
C FUNCTION 2) IS SELECTED IF FLAG=l.
C
C

REAL*8 XI,XIP1,Y,AREA,YL,XLAST,ADTNL
N=0
IF(FLAG .NE. 1.)GO TO 5
CALL INTGRL(XI,XIPI,Y,AREA, 0.)
GO TO 30

5 XLAST=999.
ADTNL=.001
CRTRN=.001
XIPI=2.*Y-XI-' i"XL=XIPI

10 CALL INTGRL(XI,XIP1,Y,AREA,0.)
N=N+I
IF(N .EQ. 500)GO TO 30
IF(CRTRN .LT. DABS(AREA))GO TO 15
CRTRN=CRTRN/10.
IF(CRTRN .LE. 1.E-7)GO TO 30

15 IF(DABS(AREA) .LE. DABS(XLAST))GO TO 20
XIP1=XL
ADTNL=ADTNL/2.
CALL INTGRL(XI,XIPI,Y,AREA,0.)

20 XLAST=AREA
XL=XIP1
IF(AREA .LT. 0.)GO TO 25
XIP1=XIPI-ADTNL
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**Subroutine for Centroid Calculations**

GO TO 10
25 XIPl=XIPl+AJTNL

GO TO 10
30 RETURN

END
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.* Subroutine for Vector Quantizer Design ,

SUBROUTINE VQDSN(NKDIM,X, ISEQSZ ,A)
C-------------------------------------------------------i. C

"C VECTOR QUANTIZER DESIGN SUBROUTINE
C
C
C A = QUANTIZER CODEBOOK
C X = TRAINING SET
C DSTRN = DISTORTION BETWEEN ITH VECTOR OF X, AND
C JTH CODEVECTOR OF A.
C EPS = DISTORTION THRESHOLD
C KDIM = VECTOR SPACE DIMENSION (BLOCK LENGTH)
C DM = OVERALL AVERAGE DISTORTION AT MTH STAGE
C P = MINIMUM DISTORTION PARTITION
C N = NUMBER OF QUANTIZATION LEVELS
C NUM = NUMBER OF TRAINING VECTORS
C SMALL = LIST OF SMALLEST DISTORTIONS
C IPT = IDENTIFIES PARTITION SET FOR EACH
C TRAINING SET.

S. C NUMP = NUMBER OF TRAINING VECTORS IN
C EACH PARTITION.
C
C
C DIMENSIONALITY:C A (N, KDIM) , X (KDIM, NUM),
C DSTRN(NUM,N), SMALL(NUM), IPT(NUM),

C NUMP(N)
C
C
C
C
C

REAL*4 A(64,16),X(KDIM,1),SEQNCE(1)
REAL*4 SMALL(2048),ATEMP(32,16),EPSLON(16)
INTEGER IPT(2048) NUMP(16)
DATA EPSLON/16*.5/
DO 6 I=I,N
DO 6 K=I,KDIM

- 6 A(I,K)=0.
NUM= ISEQSZ/KDIM

EPS=0.0001
DLASTI. E50
DO 1 I=1,NUM
DO 1 K=I,KDIM

1 A(1,K)=A(I,K)+X(K,I)/NUM
C. NCOUNT=I
-------------------- --------------------
C
C SPLIT CODEBOOK
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*Subroutine for Vector Quantizer Design**

C4
C

5 DO 2 I=1,NCOUNT
DO 2 K=1,KDIM

2 ATEMP(I,K)=A(I,,K)
I CNT= 0

* . DO 4 I=1,NCOUNT
ICNT=ICNT+l
DO 3 K=1,KDIr4

3 A(ICNT,K)=ATEMP(I,K)+EPSLON(K)
ICNT=ICNT+l
DO 4 K=1,KDIM

4 A(ICNT,K)=ATEMP(I,K)-EPSLON(K)
NCOUNT= 2*NCOUNT

10 IF (M .EQ. 100) GO TO. 999
DO 200 I=1,NUM
SMALL(I) =1.E50
IPT(I)=1
DO 100 J=1,NCOUNT
DSTRN=O.
DO 50 K=1,KDIM

50 DSTRN=DSTRN+(X(K,I)-A(J,K))*(X(K,I)-A(J,K))
IF(DSTRN .GT. SMALL(I))GO TO 100
SMALL (I) =DSTRN
IPT(I)=J

100 CONTINUE
200 CONTINUE

DO 300 J=1,NCOUNT
NUMP(J) =0
DO 300 I=1,NUM
IF(IPT(I) .NE. J) GO mO 30 0
NUMP (J) NUMP (J, +1

300 CONTINUE
DM=0.
DO 400 I=1,NUM

400 DM=DMiSMALL(I)
DM= DM/NUM
WRITE(6,772)DM

772 FORMAT(' DM:',E15.5)
IF (DM . EQ. DL.AST) GO TO 999
IF(ABS((DLAST-DM)/DM) .LE. EPS) GO TO 999
DLAST=DM
DO 500 I=1,NCOUNT
IF(NUMP(I) .EQ. 0) GO TO 500
NVECS=NUMP(I)
DO 420 K=1,KDIM

4420 A(I,K)=O.
IF(NVECS .EQ. 0)GO TO 430
DO 430 J=1,NUM
IF(IPT(J) *NE. I)GO TO 430
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SSubroutine for Vector Quantizer Design

DO 425 K=1,KDIM
425 A (1,K) =A(I, K) +X(K, J) /NVECS
430 CONTINUE
500 CONTINUE

M=M+1
GO TO 10

999 IF(NCOUNT .NE. N)GO TO 5
S..WRITE (6, 8B88) K

888 FORI4AT(l M1=,15)
* RETURN

END
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.* Subroutine for Vector Quantization **

SUBROUTINE VECQNT(X, KDIM, N, CDBK)
C--------------------------------------------
C
C VECTOR QUANTIZ ER:
C
C EXHAUSTIVE SEARCH FOR MIN DISTORTION.

C
" REAL*4 X(1),CDBK(64,16)

SMALL=I E50
IPT=1
DO 50 J=1,N
DSTRN=0.
DO 25 K=1,KDIM

25 DSTRN=DSTRN+(X(K)-CDBK(J,K))*(X(K)-CDBK(J,K))
IF(DSTRN .GT. SMALL)GO TO 50
SMALL=DSTRN
IPT=J

50 CONTINUE
DO 75 K-1,KDIM

75 X(K)=CDBK(IPT,K)
RETURN
END

b'.. 88
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SProqrzarm for Tape /Disk Transferals

-p., INTEGER*2 IP(256)
LOGICAL*l PPICT(2,256)
EQUIVALENCE(IP(l) ,PPICT(l,l))
DO 999 N=1,6
Do 10 I=1,256
READ(N) IP
DO 7 KK=l,256
IF (IP(KK) .GT. 255) IP(KK)=255
IF (IP(KK) .LT. 0) IP(KK)=0

4.7 CONTINUE
WRITE(8,11) (PPICT(2,MM) ,MM=1,256)

11 FORI4AT(4(64A1))
10 CONTINUE

ENDFILE 8
999 CONTINUE

REWIND 8
STOP
END
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**Program for SNR Calculations and Histogram Generation**

INTEGER*2 R(256),T(256)
INTEGER*4 RI(256),TI(256) ,ORIG(256,256) ,TWOISZ,TWOIP1
DATA R/256*0/
REAL H(12,513),TMSE(12),SNR(12),RATIO(12),HWR(257)
REAL SIG(16)
DATA SIG/16*0./

C------------------------------------------------------------
-. C

C
C
C PROGRAM TO CALCULATE THE SNR RATIO OF AN IMAGE
C AND GENERATE A HISTOGRAM OF THE ERROR BETWEEN
C TWO IMAGES.
C
C
C

ISZ=256
READ (5,17) NUM

17 FORMAT(I2)
SQISZ=FLOAT(ISZ) *FLOAT(ISZ)
TWOISZ=2*ISZ
ISZP1=ISZ+1
TWOIP1=TWOISZ +1
INCRMT=512-ISZ

* SUM=O.
DO 10 I=1.ISZ
READ(1)T
DO 10 J=1,ISZ
TI(J)=T(J)
SUM=SUM+FLOAT(TI ('))

10 OR IG (I, J) =TI (J)
AVE= SUM/SQ ISZ
SIG2=0.
I=0
IC=0
DO 16 ID=1,ISZ,16
IC= IC+1
DO 15 IN=1,16
1=1+1
DO 15 J=1,ISZ

15 SIG(IC)=SIG(IC)+(FLOAT(ORIG(I,J))-AVE)*(FLOAT(ORIG(I,J))-AVE)
16 SIG2=SIG2+SIG (IC)

Do 200 N=1,NUM
* NUMO FF=N+ 7

DO 20 J=1,TNOISZ
20 H(N,J)=0.

ERR2=0.
WRITE(6,2) N

2 FORMAT(' READING IMAGE #',13)
O 1=0
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* ~ Program for SNR Calculations and Histogram Generation

p IC=0
DO 50 IOLT=1,ISZ,16
IC=IC+1
ERRi=0.
D0 49 IN=l,16

TIIFOIGI ) R J

READ (NUMOFF)R

IF(IDIFF .LT. (ORIG(I,J)-255))IDIFF=ORIG(I,J)-255
IF(IDIFF .GT. ORIG(I,J))IDIFF=ORIG(I,J)
INDEX=IDIFF+ISZ P1
H (N, INDEX) =H (N, INDEX) +1.0

49 ERR1=ERR1+FLOAT(IDIFF) *FLOAT(IDIFF)
ERR2=ERR2 +ERR.
BLKSQ=40 96. **2.
TMSl =ERR1/BLKSQ
SNRI=SIG (IC) /ERR.
RAT1=10 . ALOGh0 (SNR1)
WRITE (6,400) IC, TMS1, SNRI, RAT1

400 FORMAT(' BLK: ',15,3(2X,E15.5))
50 CONTINUE
100 TMSE (N) =ERR2/SQISZ

SNR(N) =SIG2/ERR2
200 RATIO(N)=10.*ALOG10(SNR(N))

DO 300 N=1,NUM
DO 250 J=1,TWOIP1 .
IF( (J .LT. 128) .OR. (J .GT. 384) )GO TO 250
JPT=J-127
HWR (JPT) =H (N, J)

250 CONTINUE
WRITE(24) HWR
WRITE(6,1)N,TYISE(N),SNR(N),RATIO(N)

1 FORMAT(@ #-,13,' MSE: 1,E15.5,' SNR: ',E15.5,' RATIO: ',E15.5)
300 CONTINUE

STOP
END
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SSubroutine to Plot Histograms -- CALCOMP

REAL HWR(257),H(259),X(259)

NC=1
CALL PLOTS (IB,NC,25)
CALL PLOT (1.75,1.0,-3)j LG= 257
NUM=6
DO 500 LOOP=1,NUM
WRITE(6,1l)

11 FORMAT(' /*CHANGE PAPER THEN ENTER: 1')
READ(5,12)ANS

12 FORMAT (lAl)
READ(24)HWR

* WRITE(25,13)
13 FORMAT(' .1COPY HO PLi')

DO 10 I=1,LG
10 H(I)=HWR(I)

* DO 50 I=1,LG
50 X(I)=I-129

X (LG+1) =-128.0
X(LG+2)=32.0
H(LG+l) =0.0
H(LG+2)=2200.0
CALL AXIS (O.,0.,'PIXEL ERROR',-11,8.0,0.0,X(LG+1),X(LG+2))
CALL AXIS (O.,0.,'FREQUENCY 1,10,5.0,90.,H(LG+1),H(LG+2))
DO 100 I=1,LG,1
XX=(X(I)-X(LG+1))/X(LG+2)
YY=H(I)/H(LG+2)
CALL PLOT(XX,YY,3)

100 CALL PLOT(XX,0.,2)
CALL SYMBOL(1.5,5.0,0.21,'HISTOGRAM OF THE ERRORI,0.0,22)
CALL SYMBOL(2.55,4.75,0.21,'FOR THE CITY',0.0,12)
CALL SYMBOL(3.075,4.5,0.21,'256X256',0.0,7)
CALL PLOT(12.0,9.0,999)

500 CONTINUE
STOP
END
SUBROUTINE PSPCHR

C SUB FOR SPECIAL CHARACTERS.
RETURN
END
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